scholarly journals The integrity of synthetic magnesium silicate in charged compounds

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystal L. House ◽  
Zhigang Hao ◽  
Yuxin Liu ◽  
Long Pan ◽  
Deirdre M. O’Carroll ◽  
...  

AbstractMagnesium silicate is an inorganic compound used as an ingredient in product formulations for many different purposes. Since its compatibility with other components is critical for product quality and stability, it is essential to characterize the integrity of magnesium silicate in different solutions used for formulations. In this paper, we have determined the magnitude of dissociation of synthetic magnesium silicate in solution with positively charged, neutral, and negatively charged compounds using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). The EDS results were verified through Monte Carlo simulations of electron-sample interactions. The compounds chosen for this study were positively charged cetylpyridinium chloride (CPC), neutral lauryl glucoside, and negatively charged sodium cocoyl glutamate and sodium cocoyl glycinate since these are common compounds used in personal care and oral care formulations. Negatively charged compounds significantly impacted magnesium silicate dissociation, resulting in physio-chemical separation between magnesium and silicate ions. In contrast, the positively charged compound had a minor effect on dissociation due to ion competition, and the neutral compound did not have such an impact on magnesium silicate dissociation. Further, when the magnesium ions are dissociated from the synthetic magnesium silicate, the morphology is changed accordingly, and the structural integrity of the synthetic magnesium silicate is damaged. The results provide scientific confidence and guidance for product development using synthetic magnesium silicate.

2021 ◽  
Author(s):  
Krystal House ◽  
Zhigang Hao ◽  
Long Pan ◽  
Deirdre O’Carroll ◽  
shiyou xu ◽  
...  

Abstract Magnesium silicate is an inorganic compound which can be used as an ingredient in product formulations for many different purposes. Since its compatibility with other ingredients is critical for product quality and stability, it is essential to characterize the integrity of magnesium silicate in different solutions used for various product formulations. In this paper, we have determined the magnitude of dissociation of synthetic magnesium silicate in positive, neutral, and negative charged compounds using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and verified the results using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). Negatively charged compounds were found to significantly impact magnesium silicate dissociation, resulting in physio-chemical separation between magnesium and silicate ions while the positively charged compound had a minor effect on dissociation due to ion competition, and the neutral compound did not have such an impact on magnesium silicate dissociation. Further, when the magnesium ions are dissociated from the synthetic magnesium silicate, the morphology is changed accordingly, and the structural integrity of the synthetic magnesium silicate is damaged. The results provide a scientific confidence and guidance for product development using the synthetic magnesium silicate.


Author(s):  
Gianluca Mannucci ◽  
Giuliano Malatesta ◽  
Giuseppe Demofonti ◽  
Marco Tivelli ◽  
Hector Quintanilla ◽  
...  

Nowadays specifications require strict Yield to Tensile ratio limitation, nevertheless a fully accepted engineering assessment of its influence on pipeline integrity is still lacking. Probabilistic analysis based on structural reliability approach (Limit State Design, LSD) aimed at quantifying the yield to tensile strength ratio (Y/T) influence on failure probabilities of offshore pipelines was made. In particular, Tenaris seamless pipe data were used as input for the probabilistic failure analysis. The LSD approach has been applied to two actual deepwater design cases that have been on purpose selected, and the most relevant failure modes have been considered. Main result of the work is that the quantitative effect of the Y/T ratio on failure probabilities of a deepwater pipeline resulted not so big as expected; it has a minor effect, especially when Y only governs failure modes.


2001 ◽  
Vol 85 (04) ◽  
pp. 716-723 ◽  
Author(s):  
Elisabeth Schaffner-Reckinger ◽  
Nicolaas Brons ◽  
Nelly Kieffer

SummaryIn order to explore the mechanisms leading to conformational changes of the vitronectin receptor αvβ3 following ligand or divalent cation binding, we have investigated the expression of epitopes known as ligand-induced binding sites (LIBS) on 3 cytoplasmic tail mutants expressed in CHO cells. Truncation of the entire 3 cytoplasmic domain induced constitutive LIBS exposure on αvβ3 and IIb β3. Deletion of the C-terminal NITY759 sequence or disruption of the NPLY747 motif by a Y747A substitution impaired extracellular conformational changes on αvβ3 following RGDS, echistatin or Mn2+ binding, whereas the substitutions Y747F, Y759A or Y759F allowed normal LIBS exposure. Furthermore, metabolic energy depletion totally prevented Mn2+-dependent LIBS exposure, but had only a minor effect on RGDS-induced conformational changes. Our results demonstrate that the structural integrity of the NPLY747 motif in the β3 cytoplasmic domain, rather than potential phosphorylation of Tyr747 or Tyr759, is a prerequisite for conformational changes within the αvβ3 ectodo-main, and suggest that two different mechanisms are responsible for RGDS- and Mn2+-dependent conformational changes.


2003 ◽  
Vol 03 (03n04) ◽  
pp. 299-308 ◽  
Author(s):  
BOON-HO NG ◽  
SIAW-MENG CHOU

The objective of the current study is to elucidate the influence of freeze storage on the tensile properties of tendons by testing specimens at numerous adjacent durations to eliminate the influence of biological variation and experimental errors. Chicken flexor digitorum profundus tendons were stored intact in the digits at -20°C and specimens were tensile tested at 33 durations over 360 days. Scanning electron microscopy was done on fresh specimens and specimens freeze-stored for 30, 233 and 427 days to investigate microstructure change after freeze storage. The tensile properties of tendons, as represented by ultimate tensile strength, strained at ultimate tensile strength. The elastic modulus did not deviate significantly (p>0.01) after freeze storage while the collagen fiber density of specimens stored for 233 and 427 days decreased with porosity growth. In contrast, no obvious microstructure difference was observed between fresh tendons and tendons stored for 30 days. These findings suggest that the postmortem degradation incurred a minor effect on the structural integrity of the tendons and therefore did not affect the overall tensile properties. We conclude that freeze storage at -20°C does not alter the tensile properties of tendons for as many as 360 days.


2006 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
V. Miska ◽  
J.H.J.M. van der Graaf ◽  
J. de Koning

Nowadays filtration processes are still monitored with conventional analyses like turbidity measurements and, in case of flocculation–filtration, with phosphorus analyses. Turbidity measurements have the disadvantage that breakthrough of small flocs cannot be displayed, because of the blindness regarding changes in the mass distributions. Additional particle volume distributions calculated from particle size distributions (PSDs) would provide a better assessment of filtration performance. Lab-scale experiments have been executed on a flocculation–filtration column fed with effluent from WWTP Beverwijk in The Netherlands. Besides particle counting at various sampling points, the effect of sample dilution on the accuracy of PSD measurements has been reflected. It was found that the dilution has a minor effect on PSD of low turbidity samples such as process filtrate. The correlation between total particle counts, total particle volume (TPV) and total particle surface is not high but is at least better for diluted measurements of particles in the range 2–10 μm. Furthermore, possible relations between floc-bound phosphorus and TPV removal had been investigated. A good correlation coefficient is found for TPV removal versus floc-bound phosphorus removal for the experiments with polyaluminiumchloride and the experiments with single denitrifying and blank filtration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Brassac ◽  
Quddoos H. Muqaddasi ◽  
Jörg Plieske ◽  
Martin W. Ganal ◽  
Marion S. Röder

AbstractTotal spikelet number per spike (TSN) is a major component of spike architecture in wheat (Triticumaestivum L.). A major and consistent quantitative trait locus (QTL) was discovered for TSN in a doubled haploid spring wheat population grown in the field over 4 years. The QTL on chromosome 7B explained up to 20.5% of phenotypic variance. In its physical interval (7B: 6.37–21.67 Mb), the gene FLOWERINGLOCUST (FT-B1) emerged as candidate for the observed effect. In one of the parental lines, FT-B1 carried a non-synonymous substitution on position 19 of the coding sequence. This mutation modifying an aspartic acid (D) into a histidine (H) occurred in a highly conserved position. The mutation was observed with a frequency of ca. 68% in a set of 135 hexaploid wheat varieties and landraces, while it was not found in other plant species. FT-B1 only showed a minor effect on heading and flowering time (FT) which were dominated by a major QTL on chromosome 5A caused by segregation of the vernalization gene VRN-A1. Individuals carrying the FT-B1 allele with amino acid histidine had, on average, a higher number of spikelets (15.1) than individuals with the aspartic acid allele (14.3) independent of their VRN-A1 allele. We show that the effect of TSN is not mainly related to flowering time; however, the duration of pre-anthesis phases may play a major role.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Kristina Ritter ◽  
Jan Christian Sodenkamp ◽  
Alexandra Hölscher ◽  
Jochen Behrends ◽  
Christoph Hölscher

Anti-inflammatory treatment of chronic inflammatory diseases often increases susceptibility to infectious diseases such as tuberculosis (TB). Since numerous chronic inflammatory and autoimmune diseases are mediated by interleukin (IL)-6-induced T helper (TH) 17 cells, a TH17-directed anti-inflammatory therapy may be preferable to an IL-12-dependent TH1 inhibition in order to avoid reactivation of latent infections. To assess, however, the risk of inhibition of IL-6-dependent TH17-mediated inflammation, we examined the TH17 immune response and the course of experimental TB in IL-6- and T-cell-specific gp130-deficient mice. Our study revealed that the absence of IL-6 or gp130 on T cells has only a minor effect on the development of antigen-specific TH1 and TH17 cells. Importantly, these gene-deficient mice were as capable as wild type mice to control mycobacterial infection. Together, in contrast to its key function for TH17 development in other inflammatory diseases, IL-6 plays an inferior role for the generation of TH17 immune responses during experimental TB.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Natalie Ben Abu ◽  
Philip E. Mason ◽  
Hadar Klein ◽  
Nitzan Dubovski ◽  
Yaron Ben Shoshan-Galeczki ◽  
...  

AbstractHydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish D2O from H2O by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners. In contrast, mice do not prefer D2O over H2O, indicating that they are not likely to perceive heavy water as sweet. HEK 293T cells transfected with the TAS1R2/TAS1R3 heterodimer and chimeric G-proteins are activated by D2O but not by H2O. Lactisole, which is a known sweetness inhibitor acting via the TAS1R3 monomer of the TAS1R2/TAS1R3, suppresses the sweetness of D2O in human sensory tests, as well as the calcium release elicited by D2O in sweet taste receptor-expressing cells. The present multifaceted experimental study, complemented by homology modelling and molecular dynamics simulations, resolves a long-standing controversy about the taste of heavy water, shows that its sweet taste is mediated by the human TAS1R2/TAS1R3 taste receptor, and opens way to future studies of the detailed mechanism of action.


2021 ◽  
Vol 52 (2) ◽  
pp. 792-803
Author(s):  
Marit Buhaug Folstad ◽  
Eli Ringdalen ◽  
Halvard Tveit ◽  
Merete Tangstad

AbstractThis work investigates the phase transformations in silica (SiO2) during heating to a target temperature between 1700 °C and 1900 °C and the effect of SiO2 polymorphs on the reduction reaction 2SiO2 + SiC = 3SiO + CO in silicon production. Different heating rates up to target temperature have been used to achieve the different compositions of quartz, amorphous silica and cristobalite. The different heating rates had a minor effect on the final composition, and longer time at temperatures > 1400 °C were necessary to achieve greater variations in the final composition. Heating above the melting temperature gave more amorphous silica and less cristobalite, as amorphous silica also may form from β-cristobalite. Isothermal furnace experiments were conducted to study the extent of the reduction reaction. This study did not find any significant difference in the effects of quartz, amorphous silica or cristobalite. Increased temperature from 1700 °C to 1900 °C increased the reaction rate.


2019 ◽  
Vol 35 (S1) ◽  
pp. 16-16
Author(s):  
Orla Maguire ◽  
Laura McCullagh ◽  
Cara Usher ◽  
Michael Barry

IntroductionThere is ongoing debate as to whether conventional pharmacoeconomic evaluation (PE) methods are appropriate for orphan medicinal products (OMPs). The National Centre for Pharmacoeconomics (NCPE) in Ireland has a well-defined process for conducting pharmacoeconomic evaluations of pharmaceuticals, which is the same for OMPs and non-OMPs. The objective of this study was to identify whether supplementary criteria considered in the pharmacoeconomic evaluation of OMPs would affect final reimbursement recommendations.MethodsA literature search was conducted to identify criteria. Orphan drug pharmacoeconomic evaluations completed by the NCPE between January 2015 and December 2017 were identified and supplementary criteria, where feasible, were applied.ResultsFourteen pharmacoeconomic evaluations were included in the study. Three criteria that could feasibly be applied to the NCPE evaluation process were identified, all three of which essentially broadened the economic perspective of the pharmacoeconomic evaluation. Higher cost-effectiveness threshold: Despite being arbitrarily raised from EUR 45,000/QALY to EUR 100,000/QALY, only one orphan drug demonstrated cost-effectiveness at this higher threshold. Weighted QALY gain: here, a weighted gain of between one and three is applied to drugs demonstrating QALY gains between 10 and 30, respectively. No OMPs included in the study showed a QALY gain of more than 10. Thirteen demonstrated QALY gains less than 10 and one could not be evaluated. Societal perspective: six submissions incorporated societal perspective as a scenario analysis. Despite incremental cost-effectiveness ratios (ICERs) being reduced between 4 percent and 58 percent, only two OMPs demonstrated cost-effectiveness at the higher threshold (EUR 100,000/QALY).ConclusionsApplication of supplementary criteria to the pharmacoeconomic evaluation of OMPs had a minor effect on three products assessed. However, for the majority, the final cost-effectiveness outcomes remained the same. The study highlights that other criteria are being considered in the decision to reimburse.


Sign in / Sign up

Export Citation Format

Share Document