scholarly journals Chewing increases postprandial diet-induced thermogenesis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuka Hamada ◽  
Naoyuki Hayashi

AbstractSlow eating, which involves chewing food slowly and thoroughly, is an effective strategy for controlling appetite in order to avoid being overweight or obese. Slow eating also has the effect of increasing postprandial energy expenditure (diet-induced thermogenesis). It is still unclear whether this is due to oral stimuli; that is, the duration of tasting food in the mouth and the duration of chewing. To investigate the effects of oral stimuli on diet-induced thermogenesis in 11 healthy normal weight males, we conducted a randomized crossover study comprising three trials: (1) drinking liquid food normally, (2) drinking liquid food after tasting, and (3) adding chewing while tasting. Oral stimuli (i.e., the duration of tasting liquid food in the mouth and the duration of chewing) significantly increased diet-induced thermogenesis after drinking liquid food. This result demonstrates that the increase in diet-induced thermogenesis is due to oral stimuli rather than the influence of the food bolus. Increased diet-induced thermogenesis induced by chewing and taste stimuli may help to prevent overweight and obesity.

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2615
Author(s):  
Bret M. Rust ◽  
Susan K. Raatz ◽  
Shanon L. Casperson ◽  
Sara E. Duke ◽  
Matthew J. Picklo

Structural differences in dietary fatty acids modify their rate of oxidation and effect on satiety, endpoints that may influence the development of obesity. This study tests the hypothesis that meals containing fat sources with elevated unsaturated fats will result in greater postprandial energy expenditure, fat oxidation, and satiety than meals containing fats with greater saturation. In a randomized, 5-way crossover design, healthy men and women (n = 23; age: 25.7 ± 6.6 years; BMI: 27.7 ± 3.8 kg/m2) consumed liquid meals containing 30 g of fat from heavy cream (HC), olive oil (OO), sunflower oil (SFO), flaxseed oil (FSO), and fish oil (FO). Energy expenditure and diet-induced thermogenesis (DIT) were determined by metabolic rate over a 240 min postprandial period. Serum concentrations of ghrelin, glucose, insulin, and triacylglycerol (TAG) were assessed. DIT induced by SFO was 5% lower than HC and FO (p = 0.04). Energy expenditure and substrate oxidation did not differ between fat sources. Postprandial TAG concentrations were significantly affected by fat source (p = 0.0001). Varying fat sources by the degree of saturation and PUFA type modified DIT but not satiety responses in normal to obese adult men and women.


2019 ◽  
Vol 38 (1) ◽  
pp. 457-464 ◽  
Author(s):  
Giorgio Bedogni ◽  
Simona Bertoli ◽  
Alessandro Leone ◽  
Ramona De Amicis ◽  
Elisa Lucchetti ◽  
...  

2008 ◽  
Vol 99 (5) ◽  
pp. 1068-1075 ◽  
Author(s):  
A. Khossousi ◽  
C. W. Binns ◽  
S. S. Dhaliwal ◽  
S. Pal

Overweight and obesity is one of the risk factors for developing CVD. At present, very little is known about the acute effects of dietary fibre on lipids, glucose and insulin, resting energy expenditure and diet-induced thermogenesis in overweight and obese individuals. This study examined the postprandial metabolic effects of dietary fibre in overweight and obese men. Ten overweight and obese men consumed a mixed meal accompanied by either a high-fibre or low-fibre supplement on two separate visits, in a random order, 1 week apart. Two isoenergetic breakfast meals with similar composition were consumed by ten overweight/obese men. The meals contained either a low (3 g) or high (15 g) amount of fibre, low-fibre meal (LFM) and high-fibre meal (HFM) respectively. Analysis was carried out using paired t test and ANOVA. Serum TAG incremental area under the curve during 6 h of the postprandial period was significantly lower after the consumption of HFM compared with LFM. At the first hour of the postprandial period, plasma apo B48 concentration after consumption of HFM was significantly lower compared with LFM. The resting energy expenditure and diet-induced thermogenesis after both meals was similar during 6 h of the postprandial period. Collectively, these findings suggest that a single acute dose of dietary fibre in the form of psyllium supplement can decrease arterial exposure to TAG and modify chylomicron responses in the postprandial period.


2019 ◽  
Vol 65 (7) ◽  
pp. 1022-1031
Author(s):  
Lucía Cristina Vázquez Cisneros ◽  
Alma Gabriela Martínez Moreno ◽  
Antonio López-Espinoza ◽  
Ana Cristina Espinoza-Gallardo

SUMMARY The energy imbalance produced by an increase in caloric intake and/or decrease in energy expenditure induces obesity. However, the fatty acid composition of a diet can affect the metabolism in different ways, having a role in the development of obesity. AIM To determine the effect of different fatty acids types and composition on Diet-Induced Thermogenesis (DIT) and postprandial energy expenditure in humans. METHODS A search in the PubMed and Web of Science databases, yielded a total of 269 potential articles as a first result; 254 were excluded according to the criteria. RESULTS Fifteen articles were used for this systematic review. The studies analyzed report different effects of the fatty acids of the treatment on the diet-induced thermogenesis. Evidence indicates that the consumption of polyunsaturated fatty acids causes a greater DIT than saturated fatty acids. Also, the consumption of medium-chain fatty acids compared to long-chain fatty acids has been shown to increase DIT. Likewise, the use of certain oils has shown positive effects on postprandial energy expenditure, as is the case of olive oil, compared to rapeseed oil. CONCLUSIONS The use of specific types of fatty acids in the everyday diet can increase postprandial energy expenditure in humans. Nevertheless, longer-term studies are required.


2020 ◽  
Vol 105 (3) ◽  
pp. e211-e221 ◽  
Author(s):  
Juliane Richter ◽  
Nina Herzog ◽  
Simon Janka ◽  
Thalke Baumann ◽  
Alina Kistenmacher ◽  
...  

Abstract Background The question of whether there is daytime time variation in diet-induced thermogenesis (DIT) has not been clearly answered. Moreover, it is unclear whether a potential diurnal variation in DIT is preserved during hypocaloric nutrition. Objective We hypothesized that DIT varies depending on the time of day and explored whether this physiological regulation is preserved after low-calorie compared with high-calorie intake. Design Under blinded conditions, 16 normal-weight men twice underwent a 3-day in-laboratory, randomized, crossover study. Volunteers consumed a predetermined low-calorie breakfast (11% of individual daily kilocalorie requirement) and high-calorie dinner (69%) in one condition and vice versa in the other. DIT was measured by indirect calorimetry, parameters of glucose metabolism were determined, and hunger and appetite for sweets were rated on a scale. Results Identical calorie consumption led to a 2.5-times higher DIT increase in the morning than in the evening after high-calorie and low-calorie meals (P < .001). The food-induced increase of blood glucose and insulin concentrations was diminished after breakfast compared with dinner (P < .001). Low-calorie breakfast increased feelings of hunger (P < .001), specifically appetite for sweets (P = .007), in the course of the day. Conclusions DIT is clearly higher in the morning than in the evening, irrespective of the consumed calorie amount; that is, this physiological rhythmicity is preserved during hypocaloric nutrition. Extensive breakfasting should therefore be preferred over large dinner meals to prevent obesity and high blood glucose peaks even under conditions of a hypocaloric diet.


2007 ◽  
Vol 85 (5) ◽  
pp. 507-513 ◽  
Author(s):  
Elena Alexandrou ◽  
Gene R. Herzberg ◽  
Matthew D. White

The objective of this study was to assess how short-term feeding of high levels of dietary medium-chain triglyceride (MCT) affect energy expenditure and postprandial substrate oxidation rates in normal-weight, premenopausal women. Eight healthy women were fed both a MCT-rich and an isocaloric long-chain triglyceride (LCT)-rich diet for two 1-week periods separated by a minimum of 21 days. The energy intake in each diet was 45% carbohydrates, 40% fat, and 15% protein. The 2 diets had either 60.81% or 1.11% of total fat energy from MCT with the remaining fat energy intake from LCT. On days 1 and 7 of each diet, resting metabolic rate and postprandial energy expenditure (EE) were measured by indirect calorimetry with a ventilated hood. Results indicated on days 1 and 7, there were no significant differences between diets for resting metabolic rate or mean postprandial EE. On both days 1 and 7, fat oxidation for the MCT-rich diet was significantly greater (0.0001 ≤ p ≤ 0.04) than that for the LCT-rich diet at different time points across the 5.5 h postprandial period. In conclusion, for premenopausal, normal-weight women consuming a diet with 25% of the energy content from MCT, there were no changes in resting metabolic rate, transient increases in postprandial energy expenditure, and significant increases in postprandial fat oxidation.


2008 ◽  
Vol 99 (6) ◽  
pp. 1316-1321 ◽  
Author(s):  
Astrid J. Smeets ◽  
Margriet S. Westerterp-Plantenga

A gorging pattern of food intake has been shown to enhance lipogenesis and increase body weight, which may be due to large fluctuations in storage and mobilisation of nutrients. In a state of energy balance, increasing meal frequency, and thereby decreasing inter-meal interval, may prevent large metabolic fluctuations. Our aim was to study the effect of the inter-meal interval by dividing energy intake over two or three meals on energy expenditure, substrate oxidation and 24 h satiety, in healthy, normal-weight women in a state of energy balance. The study was a randomised crossover design with two experimental conditions. During the two experimental conditions subjects (fourteen normal-weight women, aged 24·4 (sd 7·1) years, underwent 36 h sessions in energy balance in a respiration chamber for measurements of energy expenditure and substrate oxidation. The subjects were given two (breakfast, dinner) or three (breakfast, lunch, dinner) meals per d. We chose to omit lunch in the two meals condition, because this resulted in a marked difference in inter-meal-interval after breakfast (8·5 h v. 4 h). Eating three meals compared with two meals had no effects on 24 h energy expenditure, diet-induced thermogenesis, activity-induced energy expenditure and sleeping metabolic rate. Eating three meals compared with two meals increased 24 h fat oxidation, but decreased the amount of fat oxidised from the breakfast. The same amount of energy divided over three meals compared with over two meals increased satiety feelings over 24 h. In healthy, normal-weight women, decreasing the inter-meal interval sustains satiety, particularly during the day, and sustains fat oxidation, particularly during the night.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 755-P
Author(s):  
HANA KAHLEOVA ◽  
ANDREA TURA ◽  
MARTA KLEMENTOVA ◽  
LENKA BELINOVA ◽  
MARTIN HALUZIK ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document