scholarly journals A social Beaufort scale to detect high winds using language in social media posts

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iain S. Weaver ◽  
Hywel T. P. Williams ◽  
Rudy Arthur

AbstractPeople often talk about the weather on social media, using different vocabulary to describe different conditions. Here we combine a large collection of wind-related Twitter posts (tweets) and UK Met Office wind speed observations to explore the relationship between tweet volume, tweet language and wind speeds in the UK. We find that wind speeds are experienced subjectively relative to the local baseline, so that the same absolute wind speed is reported as stronger or weaker depending on the typical weather conditions in the local area. Different linguistic tokens (words and emojis) are associated with different wind speeds. These associations can be used to create a simple text classifier to detect ‘high-wind’ tweets with reasonable accuracy; this can be used to detect high winds in a locality using only a single tweet. We also construct a ‘social Beaufort scale’ to infer wind speeds based only on the language used in tweets. Together with the classifier, this demonstrates that language alone is indicative of weather conditions, independent of tweet volume. However, the number of high-wind tweets shows a strong temporal correlation with local wind speeds, increasing the ability of a combined language-plus-volume system to successfully detect high winds. Our findings complement previous work in social sensing of weather hazards that has focused on the relationship between tweet volume and severity. These results show that impacts of wind and storms are found in how people communicate and use language, a novel dimension in understanding the social impacts of extreme weather.


2006 ◽  
Vol 7 (5) ◽  
pp. 984-994 ◽  
Author(s):  
Konosuke Sugiura ◽  
Tetsuo Ohata ◽  
Daqing Yang

Abstract Intercomparison of solid precipitation measurement at Barrow, Alaska, has been carried out to examine the catch characteristics of various precipitation gauges in high-latitude regions with high winds and to evaluate the applicability of the WMO precipitation correction procedures. Five manual precipitation gauges (Canadian Nipher, Hellmann, Russian Tretyakov, U.S. 8-in., and Wyoming gauges) and a double fence intercomparison reference (DFIR) as an international reference standard have been installed. The data collected in the last three winters indicates that the amount of solid precipitation is characteristically low, and the zero-catch frequency of the nonshielded gauges is considerably high, 60%–80% of precipitation occurrences. The zero catch in high-latitude high-wind regions becomes a significant fraction of the total precipitation. At low wind speeds, the catch characteristics of the gauges are roughly similar to the DFIR, although it is noteworthy that the daily catch ratios decreased more rapidly with increasing wind speed compared to the WMO correction equations. The dependency of the daily catch ratios on air temperature was confirmed, and the rapid decrease in the daily catch ratios is due to small snow particles caused by the cold climate. The daily catch ratio of the Wyoming gauge clearly shows wind-induced losses. In addition, the daily catch ratios are considerably scattered under strong wind conditions due to the influence of blowing snow. This result suggests that it is not appropriate to extrapolate the WMO correction equations for the shielded gauges in high-latitude regions for high wind speed of over 6 m s−1.



2021 ◽  
Author(s):  
Bianca Zilker ◽  
Anne-Marlene Blechschmidt ◽  
Sora Seo ◽  
Ilias Bougoudis ◽  
Tim Bösch ◽  
...  

<p align="justify">Bromine Explosion Events (BEEs) have been observed since the late 1990s in the Arctic and Antarctic during polar spring and play an important role in tropospheric chemistry. In a heterogeneous, autocatalytic, chemical chain reaction cycle, inorganic bromine is released from the cryosphere into the troposphere and depletes ozone often to below detection limit. Ozone is a source of the most important tropospheric oxidizing agent OH and the oxidizing capacity and radiative forcing of the troposphere are thus being impacted. Bromine also reacts with gaseous mercury, thereby facilitating the deposition of toxic mercury, which has adverse environmental impacts. C<span lang="en-US">old saline surfaces, such as young sea ice, frost flowers, and snow are likely bromine sources </span><span lang="en-US">during BEEs. </span><span lang="en-US">D</span>ifferent meteorological conditions seem to favor the development of these events: on the one hand, low wind speeds and a stable boundary layer, where bromine can accumulate and deplete ozone, and on the other hand, high wind speeds above approximately 10 m/s with blowing snow and a higher unstable boundary layer. In high wind speed conditions – occurring for example along fronts of polar cyclones – recycling of bromine on snow and aerosol surfaces may take place aloft.</p> <p align="justify">To improve the understanding of weather conditions and bromine sources leading to the development of BEEs, case studies using high resolution S5P TROPOMI retrievals of tropospheric BrO together with meteorological simulations by the WRF model and Lagrangian transport simulations of BrO by FLEXPART-WRF are carried out. WRF simulations show, that high tropospheric BrO columns observed by TROPOMI often coincide with areas of high wind speeds. This probably points to release of bromine from blowing snow with cold temperatures favoring the bromine explosion reactions. However, some BrO plumes are observed over areas with very low wind speed and a stable low boundary layer. To monitor the amount of ozone depleted during a BEE, ozone sonde measurements from Ny-Ålesund are compared with MAX-DOAS BrO profiles. First evaluations show a drastic decrease in ozone, partly below the detection limit, while measuring enhanced BrO values at the same time. <span lang="en-US">In order to analyze </span><span lang="en-US">the possible origin</span><span lang="en-US"> of the BrO </span><span lang="en-US">plume </span><span lang="en-US">arriving in </span><span lang="en-US">Ny-</span><span lang="en-US">Å</span><span lang="en-US">lesund</span><span lang="en-US">, </span><span lang="en-US">and to investigate its transportation route, </span><span lang="en-US">FLEXPART-WRF runs are </span><span lang="en-US">executed </span><span lang="en-US">for the times of observed ozone depletion.</span></p> <p align="justify"> </p> <p align="justify"><em>This work was supported by the</em><em> DFG funded Transregio-project TR 172 “Arctic Amplification </em>(AC)<sup>3</sup><em>“.</em></p>



2020 ◽  
Vol 37 (2) ◽  
pp. 279-297 ◽  
Author(s):  
Agustinus Ribal ◽  
Ian R. Young

AbstractGlobal ocean wind speed observed from seven different scatterometers, namely, ERS-1, ERS-2, QuikSCAT, MetOp-A, OceanSat-2, MetOp-B, and Rapid Scatterometer (RapidScat) were calibrated against National Data Buoy Center (NDBC) data to form a consistent long-term database of wind speed and direction. Each scatterometer was calibrated independently against NDBC buoy data and then cross validation between scatterometers was performed. The total duration of all scatterometer data is approximately 27 years, from 1992 until 2018. For calibration purposes, only buoys that are greater than 50 km offshore were used. Moreover, only scatterometer data within 50 km of the buoy and for which the overpass occurred within 30 min of the buoy recording data were considered as a “matchup.” To carry out the calibration, reduced major axis (RMA) regression has been applied where the regression minimizes the size of the triangle formed by the vertical and horizontal offsets of the data point from the regression line and the line itself. Differences between scatterometer and buoy data as a function of time were investigated for long-term stability. In addition, cross validation between scatterometers and independent altimeters was also performed for consistency. The performance of the scatterometers at high wind speeds was examined against buoy and platform measurements using quantile–quantile (Q–Q) plots. Where necessary, corrections were applied to ensure scatterometer data agreed with the in situ wind speed for high wind speeds. The resulting combined dataset is believed to be unique, representing the first long-duration multimission scatterometer dataset consistently calibrated, validated and quality controlled.



Author(s):  
M. T. Stickland ◽  
T. J. Scanlon ◽  
I. A. Craighead ◽  
J Fernandez

Measurement of the damped oscillation of a section of the UK East Coast Main Line (ECML) catenary/contact wire system was undertaken, and the natural frequency and mechanical damping were found to be 1.4Hz and 0.05 respectively. This information was used to assess the effect of increasing the mechanical damping ratio on the susceptibility of the system to an aerodynamic galloping instability. The section of line tested was known to gallop at wind speeds of approximately 40 mile/h, and theoretical and experimental work verified this. A friction damper arm was designed and three units were fitted to the section of line affected. The introduction of increased mechanical damping was found to raise the mechanical damping coefficient of the line to between 0.095 and 0.18, and the mathematical analysis produced a theoretical wind speed for galloping oscillation of between 75 and 141 mile/h respectively. For over a year since the units were fitted, no problems with galloping instability have been observed.



2018 ◽  
Vol 45 (11) ◽  
pp. 1004-1014
Author(s):  
Quanshun Ding ◽  
Shuanghu Dong ◽  
Zhiyong Zhou

An identification of eight aerodynamic derivatives based on dual-mode and single-mode extraction of system is presented to improve the applicability and accuracy of identification at high testing wind speed. The participation rate to measure the contribution of modes on free-vibration responses is defined and the single-mode extraction is presented to extract the modal parameters of the system at high wind speed. To verify the reliability and applicability of the presented method, the aerodynamic derivatives of a dummy section with known self-excited forces are identified. It is noted that there is a very good agreement between the identified results and the target ones in the range of the low and high wind speeds and the presented method works well after the critical state of flutter. The sectional wind tunnel test of the Tanggu-haihe bridge is performed to identify the aerodynamic derivatives of the deck at the attack angles of −3°, 0°, and 3°.



2020 ◽  
Vol 12 (18) ◽  
pp. 7818
Author(s):  
Jose Alberto Moleón Baca ◽  
Antonio Jesús Expósito González ◽  
Candido Gutiérrez Montes

This paper presents a numerical and experimental analysis of the patent of a device to be used in vertical-axis wind turbines (VAWTs) under extreme wind conditions. The device consists of two hemispheres interconnected by a set of conveniently implemented variable section ducts through which the wind circulates to the blades. Furthermore, the design of the cross-section of the ducts allows the control of the wind speed inside the device. These ducts are intended to work as diffusers or nozzles, depending on the needs of the installation site. Simulations were performed for the case of high-speed external wind, for which the ducts act as diffusers to reduce wind speed and maintain a well-functioning internal turbine. Four different patent designs were analyzed, focusing on turbine performance and generated power. The results indicate that the patent allows the generation of electric power for a greater range of wind speeds than with a normal wind turbine. The results support that this patent may be a good alternative for wind power generation in geographic areas with extreme weather conditions or with maintained or strong gusty wind. Experimental tests were carried out on the movement of the blades using the available model. Finally, the power curve of the model of this wind turbine was obtained.



2017 ◽  
Vol 18 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Adam Winstral ◽  
Tobias Jonas ◽  
Nora Helbig

Abstract Winds, particularly high winds, strongly affect snowmelt and snow redistribution. High winds during rain-on-snow events can lead to catastrophic flooding while strong redistribution events in mountain environments can generate dangerous avalanche conditions. To provide adequate warnings, accurate wind data are required. Yet, mountain wind fields exhibit a high degree of heterogeneity at small spatial lengths that are not resolved by currently available gridded forecast data. Wind data from over 200 stations across Switzerland were used to evaluate two forecast surface wind products (~2- and 7-km horizontal resolution) and develop a statistical downscaling technique to capture these finer-scaled heterogeneities. Wind exposure metrics derived from a 25-m horizontal resolution digital elevation model effectively segregated high, moderate, and low wind speed sites. Forecast performance was markedly compromised and biased low at the exposed sites and biased high at the sheltered, valley sites. It was also found that the variability of predicted wind speeds at these sites did not accurately represent the observed variability. A novel optimization scheme that accounted for local terrain structure while also nudging the forecasted distributions to better match the observed distributions and variability was developed. The resultant statistical downscaling technique notably decreased biases across a range of elevations and exposures and provided a better match to observed wind speed distributions.



2013 ◽  
Vol 13 (5) ◽  
pp. 13285-13322 ◽  
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
S. D. Miller ◽  
B. Ward ◽  
K. Christensen ◽  
...  

Abstract. Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.



2020 ◽  
Vol 63 (1-4) ◽  
pp. 1-6
Author(s):  
K. Hachemi ◽  
F. Grecu ◽  
G. Ioana-Toroimac ◽  
Ş. Grigorie (Omrani) ◽  
A. Ozer ◽  
...  

SAR radar imagery allows spatial and temporal, regular and precise tracking of surfaces. The response of the radar signal is particularly sensitive to the topography, the roughness and the humidity of the grounds, thus making it possible to detect possible changes occurring between different acquisitions. The surface of the islands is formed especially of alluvial materials and covered by vegetation. The latter contributes greatly to the stability of the islands. The aim of this work is to show the contribution of radar imagery in the study of the dynamics of the Danube island system, Giurgiu-Călăraşi sector, in Romania. This study, based on amplitude images, showed the possibility of determining, locating, inventorying and mapping 11 islands (including 19 sub-islands). The radar images delimit perfectly the latter due to their sensitivity to roughness. Their surface is very rough and wet represented by a strong radiometry. On the other hand, the water surface is smooth thus giving values of low radiometry. The first results obtained show that over this period between 1995 and 2009, the changes are due mainly to weather conditions, precipitation and very high wind speeds. They also reveal an increase in sediment over this 14-year period.



2018 ◽  
Author(s):  
Thomas Davidson ◽  
Mabel Berezin

Social movement scholars have recently turned their attention to the interactions between political parties and social movements, but little is known about how social media have impacted these relationships, despite widespread adoption of these technologies. We present a case study of the relationship between Britain First, a far-right anti-Muslim social movement, and the U.K. Independence Party, the Eurosceptic political party that spearheaded the Brexit campaign. The movement appeared marginal in the press but it dominated social media, and used this presence to support to the party. We examine the dynamics of the relationship between these groups from 2013 until 2017, drawing upon data from social media, newspapers, and other online sources, and focusing both interactions on between elites and rank-and-file supporters. Our findings illustrate how far-right groups have used new technologies to generate an unprecedented amount of popular support and to attempt to influence the political mainstream.



Sign in / Sign up

Export Citation Format

Share Document