scholarly journals Nitrite isotope characteristics and associated soil N transformations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dominika Lewicka-Szczebak ◽  
Anne Jansen-Willems ◽  
Christoph Müller ◽  
Jens Dyckmans ◽  
Reinhard Well

AbstractNitrite (NO2−) is a crucial compound in the N soil cycle. As an intermediate of nearly all N transformations, its isotopic signature may provide precious information on the active pathways and processes. NO2− analyses have already been applied in 15N tracing studies, increasing their interpretation perspectives. Natural abundance NO2− isotope studies in soils were so far not applied and this study aims at testing if such analyses are useful in tracing the soil N cycle. We conducted laboratory soil incubations with parallel natural abundance and 15N treatments, accompanied by isotopic analyses of soil N compounds (NO3−, NO2−, NH4+). The double 15N tracing method was used as a reference method for estimations of N transformation processes based on natural abundance nitrite dynamics. We obtained a very good agreement between the results from nitrite isotope model proposed here and the 15N tracing approach. Natural abundance nitrite isotope studies are a promising tool to our understanding of soil N cycling.

2021 ◽  
Author(s):  
Jing Wang ◽  
Xuefa Wen ◽  
Sidan Lyu ◽  
Xinyu Zhang ◽  
Shenggong Li ◽  
...  

1974 ◽  
Vol 54 (4) ◽  
pp. 403-412 ◽  
Author(s):  
C. A. CAMPBELL ◽  
D. W. STEWART ◽  
W. NICHOLAICHUK ◽  
V. O. BIEDERBECK

Wood Mountain loam was wetted with water or (NH4)2SO4 solution to provide a factorial combination among three moisture and three NH4-N levels. Samples in polyethylene bags were incubated at 2.5-cm depths in fallow, and in an incubator that simulated the diurnal patterns of temperature fluctuation recorded in the field. During the growing season, treatments were sampled regularly for moisture, NO3− and exchangeable NH4-N. Similar determinations were made on in situ samples taken in fallow Wood Mountain loam. The incubator simulated the effects of growing season temperatures on soil N transformations satisfactorily. Pronounced increases or decreases in temperature led to flushes in N mineralization. However, in the 1972 growing season, temperature was suboptimal and temperature changes were generally small. Consequently, when a stepwise multiple regression technique was used to analyze the data, neither ammonification nor nitrification showed a quantitative relationship to temperature. Comparison of the nitrification occurring in laboratory-incubated soils with that occurring in situ led to the conclusion that 70 to 90% of the NO3-N produced in surface soil resulted from wetting and drying. Estimates of potentially ammonifiable soil N(No) and its rate of mineralization (k) were derived from cumulative ammonification by assuming that the laws of first-order kinetics were applicable. In the 10, 15, and 20% moisture treatments the average No was 27, 41, and 82 ppm, respectively. Under the conditions of this study, the time required to mineralize half of No was about 7 wk.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.


2020 ◽  
Vol 56 ◽  
pp. 207-229
Author(s):  
Diana B. Loomer ◽  
Kerry T.B. MacQuarrie ◽  
Tom A. Al

Isotopic analyses of natural gas from the Stoney Creek oil field in New Brunswick indicate carbon (δ13C) and hydrogen (δ2H) values in methane (C1) of -42.4 ± 0.7‰ VPDB and -220.9 ± 3.2‰ VSMOW, respectively. Isotopic data and a gas molecular ratio of 12 ± 1 indicate a wet thermogenic gas formed with oil near the onset of the oil-gas transition zone. The isotopic profiles of the C1–C5 hydrocarbon gases are consistent with kinetic isotope effect models. The Albert Formation of the Horton Group hosts the Stoney Creek oil field (SCOF) and the McCully gas field (MCGF) the only other gas-producing field in the province. Both are thermogenic in origin; however, the SCOF gas has a lower thermal maturity than the MCGS. Hydrocarbon gas composition in shallow aquifers across southeastern New Brunswick was also evaluated. Gas source interpretations based on δ13C and δ2H values are uncertain; oxidation and biogenic overprinting are common and complicate interpretation. The effect of oxidation on δ13C and δ2H values was apparent when C1 concentrations were ≤1 mg/L. In some samples with C1 concentrations >5 mg/L, isotopic discrimination methods point to a biogenic origin. However, the molecular ratios <75 and the presence of >C3 fractions, indicate a thermogenic origin. This suggests a thermogenic isotopic signature has been overprinted by biological activity.


2013 ◽  
Vol 8 (4) ◽  
pp. 29 ◽  
Author(s):  
Nunzio Fiorentino ◽  
Massimo Fagnano ◽  
Paola Adamo ◽  
Adriana Impagliazzo ◽  
Mauro Mori ◽  
...  

2019 ◽  
Vol 16 (21) ◽  
pp. 4277-4291
Author(s):  
Yanxia Nie ◽  
Xiaoge Han ◽  
Jie Chen ◽  
Mengcen Wang ◽  
Weijun Shen

Abstract. Elevated nitrogen (N) deposition affects soil N transformations in the N-rich soil of tropical forests. However, the change in soil functional microorganisms responsible for soil N cycling remains largely unknown. Here, we investigated the variation in soil inorganic N content, net N mineralization (Rm), net nitrification (Rn), inorganic N leaching (Rl), N2O efflux and N-related functional gene abundance in a tropical forest soil over a 2-year period with four levels of N addition. The responses of soil net N transformations (in situ Rm and Rn) and Rl to N additions were negligible during the first year of N inputs. The Rm, Rn, and Rl increased with the medium nitrogen (MN) and high nitrogen (HN) treatments relative to the control treatments in the second year of N additions. Furthermore, the Rm, Rn, and Rl were higher in the wet season than in the dry season. The Rm and Rn were mainly associated with the N addition-induced lower C:N ratio in the dry season but with higher microbial biomass in the wet season. Throughout the study period, high N additions increased the annual N2O emissions by 78 %. Overall, N additions significantly facilitated Rm, Rn, Rl and N2O emission. In addition, the MN and HN treatments increased the ammonia-oxidizing archaea (AOA) abundance by 17.3 % and 7.5 %, respectively. Meanwhile, the HN addition significantly increased the abundance of nirK denitrifiers but significantly decreased the abundance of ammonia-oxidizing bacteria (AOB) and nosZ-containing N2O reducers. To some extent, the variation in functional gene abundance was related to the corresponding N-transformation processes. Partial least squares path modelling (PLS-PM) indicated that inorganic N contents had significantly negative direct effects on the abundances of N-related functional genes in the wet season, implying that chronic N deposition would have a negative effect on the N-cycling-related microbes and the function of N transformation. Our results provide evidence that elevated N deposition may impose consistent stimulatory effects on soil N-transformation rates but differentiated impacts on related microbial functional genes. Long-term experimentation or observations are needed to decipher the interrelations between the rate of soil N-transformation processes and the abundance or expression of related functional genes.


2016 ◽  
Vol 121 (6) ◽  
pp. 1409-1419 ◽  
Author(s):  
Jinbo Zhang ◽  
Peng Tian ◽  
Jialiang Tang ◽  
Lei Yuan ◽  
Yun Ke ◽  
...  

Geoderma ◽  
2017 ◽  
Vol 301 ◽  
pp. 42-46 ◽  
Author(s):  
Siyi Liu ◽  
Xiaoping Zhang ◽  
Jun Zhao ◽  
Jinbo Zhang ◽  
Christoph Müller ◽  
...  

2013 ◽  
Vol 29 (2) ◽  
pp. 147-159 ◽  
Author(s):  
Hilton G. T. Ndagurwa ◽  
John S. Dube ◽  
Donald Mlambo

Abstract:This study investigated the effects of mistletoe infection on N cycling in a semi–arid savanna, south-west Zimbabwe. We established five plots (10 × 10 m) which each included three large canopy-dominantAcacia karrootrees infected by one of three mistletoes (Erianthemum ngamicum,Plicosepalus kalachariensisandViscum verrucosum) and non-infectedA. karrootrees. In each plot, we measured litterfall, litter quality (N, phenolics, tannins and lignin), soil nutrient concentrations and N transformations beneath tree canopies. Soil N, P and Ca were greatest beneath trees infected byP.kalachariensisthan beneath non-infected trees. Litterfall and litter N returns were 1.5, 2 and 1.4 times more beneathA. karrootrees infected byE.ngamicum,P.kalachariensisandV. verrucosum, respectively. Mineral N increased with mistletoe infection but did not exceed 20%. Soil N transformations were greater beneath trees infected byE.ngamicum(> 40%), and lower beneath trees infected byP.kalachariensis(<50%) andV.verrucosum(<48%) than beneath non-infectedA. karrootrees. Soil N transformations were negatively correlated with condensed tannins, lignin and lignin : N. We conclude that the improved N concentration can increase resource heterogeneity, which may alter the ecosystem structure and functioning in the semi-arid savanna.


Sign in / Sign up

Export Citation Format

Share Document