scholarly journals Novel nanotech antioxidant cocktail prevents medical diagnostic procedures ionizing radiation effects

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miguel Gorenberg ◽  
Abed Agbarya ◽  
David Groshar ◽  
Ilya Volovik ◽  
Ofir Avitan ◽  
...  

AbstractIonizing radiation (IR) exposure results in oxidative damage causing cytotoxic and genotoxic effects. Double-strand breaks (DSBs) are considered the most significant DNA lesions induced by ionizing radiation. The present study evaluates the radio protective effect of a novel antioxidant cocktail through quantification of DSB in peripheral blood lymphocytes (PBL) in vivo. The study included 16 consecutive patients who were divided into 2 groups, 6 patients received the novel antioxidant cocktail and 10 control patients. Blood samples were drawn from the patients undergoing bone scan, before the injection of the 99mTc MDP tracer and 2 h after the injection. Quantification of the IR damage was done by Immunofluorescence analysis of the phosphorylated histone, γ-H2AX, used to monitor DSB induction and repair in PBL. The radiation effect of the control group was measured by 2 variables, the average DBSs foci per nucleus and the percent of the DSB bearing cells in PBL. The findings showed a significant increase in the DSBs after isotope injection with an average increment of 0.29 ± 0.13 of foci/nucleus and 17.07% ± 7.68 more DSB bearing cells (p < 0.05). The cocktail treated group showed a lower difference average of − 2.79% ± 6.13 DSB bearing cells. A paired t-test revealed a significant difference between the groups (p < 0.005) confirming the cocktail’s protective effect. The novel anti-oxidant treatment decreases the oxidative stress-induced DNA damage and can be considered as a preventative treatment before radiation exposure.

2010 ◽  
Vol 26 (5) ◽  
pp. 273-280 ◽  
Author(s):  
Ayşe Eken ◽  
Ahmet Aydın ◽  
Onur Erdem ◽  
Cemal Akay ◽  
Hatice Tuba Sanal ◽  
...  

Ionizing radiation is known to induce mutations and cell transformations, predominantly by causing single-strand and double-strand DNA breakage, thereby leading to chromosome instability and carcinogenesis. The aim of this study was to evaluate genotoxic effects in hospital staff exposed to low-dose ionizing radiation in comparison with a selected control group, by using the cytokinesis-blocked micronucleus (CBMN) and sister chromatid exchange (SCE) tests in peripheral blood lymphocytes. The study included 40 exposed radiology staff and 30 control subjects. The frequency of micronuclei (MN) was significantly increased in radiation-exposed groups compared with control persons (p < 0.05). The frequency of SCE did not show any significant difference in the exposed individuals in comparison to the controls. Our results showed that low-level chronic occupational exposure to ionizing radiation causes an increase of MN frequency in chromosomes, even though the absorbed doses were below the permissible limits. Our studies indicate that the CBMN assay is considered to be sensitive test in contrast to SCE analysis to evaluate chromosomal damage induced by ionizing radiation.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1670 ◽  
Author(s):  
Wölfle-Roos JV ◽  
Katmer Amet B ◽  
Fiedler J ◽  
Michels H ◽  
Kappelt G ◽  
...  

Background: Uncemented implants are still associated with several major challenges, especially with regard to their manufacturing and their osseointegration. In this study, a novel manufacturing technique—an optimized form of precision casting—and a novel surface modification to promote osseointegration—calcium and phosphorus ion implantation into the implant surface—were tested in vivo. Methods: Cylindrical Ti6Al4V implants were inserted bilaterally into the tibia of 110 rats. We compared two generations of cast Ti6Al4V implants (CAST 1st GEN, n = 22, and CAST 2nd GEN, n = 22) as well as cast 2nd GEN Ti6Al4V implants with calcium (CAST + CA, n = 22) and phosphorus (CAST + P, n = 22) ion implantation to standard machined Ti6Al4V implants (control, n = 22). After 4 and 12 weeks, maximal pull-out force and bone-to-implant contact rate (BIC) were measured and compared between all five groups. Results: There was no significant difference between all five groups after 4 weeks or 12 weeks with regard to pull-out force (p > 0.05, Kruskal Wallis test). Histomorphometric analysis showed no significant difference of BIC after 4 weeks (p > 0.05, Kruskal–Wallis test), whereas there was a trend towards a higher BIC in the CAST + P group (54.8% ± 15.2%), especially compared to the control group (38.6% ± 12.8%) after 12 weeks (p = 0.053, Kruskal–Wallis test). Conclusion: In this study, we found no indication of inferiority of Ti6Al4V implants cast with the optimized centrifugal precision casting technique of the second generation compared to standard Ti6Al4V implants. As the employed manufacturing process holds considerable economic potential, mainly due to a significantly decreased material demand per implant by casting near net-shape instead of milling away most of the starting ingot, its application in manufacturing uncemented implants seems promising. However, no significant advantages of calcium or phosphorus ion implantation could be observed in this study. Due to the promising results of ion implantation in previous in vitro and in vivo studies, further in vivo studies with different ion implantation conditions should be considered.


2014 ◽  
Vol 39 (1) ◽  
pp. 30-34 ◽  
Author(s):  
SG Tulsani ◽  
N Chikkanarasaiah ◽  
S Bethur

Objectives: Biopure MTAD™, a new root canal irrigant has shown promising results against the most common resistant microorganism, E. faecalis, in permanent teeth. However, there is lack of studies comparing its antimicrobial effectiveness with NaOCl in primary teeth. The purpose of this study was to compare the in vivo antimicrobial efficacy of NaOCl 2.5% and Biopure MTAD™ against E. faecalis in primary teeth. Study design: Forty non vital single rooted primary maxillary anterior teeth of children aged 4-8 years, were irrigated either with NaOCl 2.5% (n=15), Biopure MTAD™ (n=15) and 0.9% Saline (n=10, control group). Paper point samples were collected at baseline (S1) and after chemomechanical preparation (S2) during the pulpectomy procedure. The presence of E. faecalis in S1 & S2 was evaluated using Real time Polymerase Chain Reaction. Results: Statistical significant difference was found in the antimicrobial efficacy of NaOCl 2.5 % and BioPure MTAD™ when compared to saline (p&gt;0.05). However, no statistical significant difference was found between the efficacies of both the irrigants. Conclusions: NaOCl 2.5% and BioPure MTAD™, both irrigants are equally efficient against E. faecalis in necrotic primary anterior teeth. MTAD is a promising irrigant, however clinical studies are required to establish it as ideal root canal irrigant in clinical practice.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Pollyanna Francielli de Oliveira ◽  
Suzana Amorim Mendes ◽  
Nathália Oliveira Acésio ◽  
Luis Claudio Kellner Filho ◽  
Leticia Pereira Pimenta ◽  
...  

The medicinal plant Vochysia divergens is a colonizing tree species of the Pantanal, a unique and little explored wetland region in Brazil. This species is used in folk medicine as syrups and teas to treat respiratory infections, digestive disorders, asthma, scarring, and skin diseases. The objectives of this study were to evaluate the antioxidant, cytotoxic, and genotoxic potential of the ethanolic extract of Vochysia divergens leaves (VdE), as well as the influence of VdE and its major component (the flavone 3′,5-dimethoxy luteolin-7-O-β-glucopyranoside; 3′5 DL) on MMS-induced genotoxicity. The extract significantly reduced the viability of V79 cells in the colorimetric XTT assay at concentrations ≥ 39 μg/mL. A significant increase in micronucleus frequencies was observed in V79 cell cultures treated with VdE concentrations of 160 and 320 μg/mL. However, animals treated with the tested doses of VdE (500, 1000, and 2000 mg/kg b.w.) exhibited frequencies that did not differ significantly from those of the negative control group, indicating the absence of genotoxicity. The results also showed that VdE was effective in reducing MMS-induced genotoxicity at concentrations of 20, 40, and 80 μg/mL in the in vitro test system and at a dose of 15 mg/kg b.w. in the in vivo test system. Its major component 3′5 DL exerted no protective effect, suggesting that it is not responsible for the effect of the extract. The results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that VdE was able to scavenge 92.6% of free radicals. In conclusion, the results suggest that the protective effect of VdE may be related, at least in part, to the antioxidant activity of its chemical constituents.


2008 ◽  
Vol 74 (7) ◽  
pp. 1997-2003 ◽  
Author(s):  
Mathieu Millette ◽  
Gilbert Cornut ◽  
Claude Dupont ◽  
François Shareck ◽  
Denis Archambault ◽  
...  

ABSTRACT This study demonstrated the capacity of bacteriocin-producing lactic acid bacteria (LAB) to reduce intestinal colonization by vancomycin-resistant enterococci (VRE) in a mouse model. Lactococcus lactis MM19 and Pediococcus acidilactici MM33 are bacteriocin producers isolated from human feces. The bacteriocin secreted by P. acidilactici is identical to pediocin PA-1/AcH, while PCR analysis demonstrated that L. lactis harbors the nisin Z gene. LAB were acid and bile tolerant when assayed under simulated gastrointestinal conditions. A well diffusion assay using supernatants from LAB demonstrated strong activity against a clinical isolate of VRE. A first in vivo study was done using C57BL/6 mice that received daily intragastric doses of L. lactis MM19, P. acidilactici MM33, P. acidilactici MM33A (a pediocin mutant that had lost its ability to produce pediocin), or phosphate-buffered saline (PBS) for 18 days. This study showed that L. lactis and P. acidilactici MM33A increased the concentrations of total LAB and anaerobes while P. acidilactici MM33 decreased the Enterobacteriaceae populations. A second in vivo study was done using VRE-colonized mice that received the same inocula as those in the previous study for 16 days. In L. lactis-fed mice, fecal VRE levels 1.73 and 2.50 log10 CFU/g lower than those in the PBS group were observed at 1 and 3 days postinfection. In the P. acidilactici MM33-fed mice, no reduction was observed at 1 day postinfection but a reduction of 1.85 log10 CFU/g was measured at 3 days postinfection. Levels of VRE in both groups of mice treated with bacteriocin-producing LAB were undetectable at 6 days postinfection. No significant difference in mice fed the pediocin-negative strain compared to the control group was observed. This is the first demonstration that human L. lactis and P. acidilactici nisin- and pediocin-producing strains can reduce VRE intestinal colonization.


2015 ◽  
Vol 1 (1) ◽  
pp. 25
Author(s):  
Laila Fitrotuz Zahroh ◽  
Rahmawati Sri Praptiningsih ◽  
Moh. Baehaqi

Background: Oral mucosa ulceration which often occurs usually in the form of white-yellowish spot with concave surface, reddish edge and pain. Based on previous research, Aloe vera process anti-inflammation substance that could help quickening ulceration healing process. This research aims to know the effect of Aloe vera flesh extract on Male wistar rats oral mucosa ulceration in-vivo. Method: this research was quasi experimental research with the post-test only control group design using Male wistar rats as the testing animal. In the research, there were three treatment groups: The first groups which was given aquadest treatment, second groups with Aloe vera flesh extract, and third groups which was given chlorhexidine gluconate 0,2% treatment. The data collecting was based on histopathology observation concerning the increase of fibroblast quantity. Result: The research result based on comparison test among the three groups with One Way Anova showed that on Day 3th, the average quantity of fibroblast didn't have significant difference between the treatment group and control group positive that was p>0,05, meanwhile on Day 7th every group showed significant difference p<0,05. Conclusion: It concluded that Aloe vera flesh extract has influence on the healing of Male wistar rats oral mucosa ulceration as shown by fibroblast increasing quantity.


2018 ◽  
Vol 8 (4) ◽  
pp. 38-38
Author(s):  
Sanaz Soleymani ◽  
Hamid Reza Samimagham ◽  
Mohammad Tamaddondar ◽  
Hossein Farshidi ◽  
Mahmood Khayatian ◽  
...  

Introduction: Contrast-induced acute kidney injury (CIN-AKI) is a serious complication of coronary angiography. Given the weaknesses in the common protective methods used to prevent CIN-AKI, a safe and effective strategy is needed. RIPC has been shown to have a nephroprotective effect. Objectives: We aimed to determine the protective effect of RIPC on CIN-AKI after angiography or percutaneous coronary intervention (PCI) in low-risk patients. Patients and Methods: In our study, 140 low-risk patients who needed angiography or PCI, were assigned to either RIPC or control group. In each group, serum creatinine and urinary neutrophil gelatinaseassociated lipocalin (uNGAL) were measured before the procedure. Serum creatinine was measured daily for 2 days and uNGAL was measured 6 and 24 hours after the procedure. Diagnosis of AKI was, according to the Kidney Disease; Improving Global Outcomes (KDIGO) criteria (2012). Results: The mean age in the remote ischemic preconditioning (RIPC) group was 56.8 ± 11.4 years and 56.3 ± 11.8 years in the control group. We observed no significant difference regarding patient’s characteristic and renal biomarkers at baseline. There was no significant difference in the incidence of AKI (P = 0.116). The uNGAL increased by 36.2% 6-hour after the procedure in patients with AKI, while at the same time, this biomarker increased only by 4.3% in patients without AKI. Conclusion: We concluded that RIPC, with 3 cycles of 5-minute ischemia and 5-minute reperfusion, did not decrease CIN-AKI or altering renal biomarkers course in low-risk patients undergoing coronary angiography or PCI. Additionally, uNGAL, seems to be an appropriate biomarker for early diagnosis of CIN-AKI, 6 hours after contrast media exposure.


Author(s):  
Asmaa Nabil-Adam ◽  
Mohamed A. Shreadah

Background: This study aimed to investigate the potential bioactivity and the ameliorative role of Galaxaura oblongata (G. oblongata) against LPS-induced toxicity by using hematological parameters. Objective: It is aimed also to examine its protective effect using the immunohistochemistry of liver and lungs as biomarkers in male BALB/C albino mice. Materials and Methods: the current study carried out using different in-vitro and in-vivo assays such as phytochemical, antioxidants, anti-inflammatory for in-vitro where the hematological and immunohistochemistry for lung and liver were investigated in vivo. Results: There are no previous studies were performed to investigate the in vivo and in vitro effects of the G. oblongata extracts as antioxidant and anti-inflammatory due to their rareness compared to other red algae. LPS treated mice revealed a significant decrease in total number of WBCs, RBCs, platelets, and HGB%, MPV, MCV and MCHC compared to the control group. On contrast, the HCT and MCHC were increased in the induction group which was treated with LPS compared to the control group. Furthermore, the immunohistochemistry results of the present study revealed the protective effect of G. oblongata compared to the induction group. G. oblongata can be used as protective marine natural products against the toxicity induced by LPS. Conclusion: It exhibited a significant ameliorative role against the alterations in the hematological parameters and immunohistochemistry of liver and lungs, and helps to reduce as well as coordinate the acute inflammations caused by TNF.


Sign in / Sign up

Export Citation Format

Share Document