scholarly journals Long-term treated HIV infection is associated with platelet mitochondrial dysfunction

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wouter A. van der Heijden ◽  
Lisa van de Wijer ◽  
Martin Jaeger ◽  
Karin Grintjes ◽  
Mihai G. Netea ◽  
...  

AbstractHIV infection and antiretroviral therapy have been linked to mitochondrial dysfunction. The role of platelet mitochondrial dysfunction in thrombosis, immunoregulation and age-related diseases is increasingly appreciated. Here, we studied platelet mitochondrial DNA content (mtDNApl) and mitochondrial function in people living with HIV (PLHIV) and related this to platelet function. In a cohort of 208 treated PLHIV and 56 uninfected controls, mtDNApl was quantified, as well as platelet activation, platelet agonist-induced reactivity and inflammation by circulating factors and flow cytometry. In a subgroup of participants, the metabolic activity of platelets was further studied by mitochondrial function tests and the Seahorse Flux Analyzer. PLHIV had significantly lower mtDNApl compared to controls (8.5 copies/platelet (IQR: 7.0–10.7) vs. 12.2 copies/platelet (IQR: 9.5–16.6); p < 0.001), also after correction for age, sex and BMI. Prior zidovudine-use (n = 46) was associated with a trend for lower mtDNApl. PLHIV also had reduced ex vivo platelet reactivity and mean platelet volume compared to controls. MtDNApl correlated positively with both platelet parameters and correlated negatively with inflammatory marker sCD163. Mitochondrial function tests in a subgroup of participants confirmed the presence of platelet mitochondrial respiration defects. Platelet mitochondrial function is disturbed in PLHIV, which may contribute to platelet dysfunction and subsequent complications. Interventions targeting the preservation of normal platelet mitochondrial function may ultimately prove beneficial for PLHIV.

2020 ◽  
Vol 126 (3) ◽  
pp. 298-314 ◽  
Author(s):  
Daniel J. Tyrrell ◽  
Muriel G. Blin ◽  
Jianrui Song ◽  
Sherri C. Wood ◽  
Min Zhang ◽  
...  

Rationale: Aging is one of the strongest risk factors for atherosclerosis. Yet whether aging increases the risk of atherosclerosis independently of chronic hyperlipidemia is not known. Objective: To determine if vascular aging before the induction of hyperlipidemia enhances atherogenesis. Methods and Results: We analyzed the aortas of young and aged normolipidemic wild type, disease-free mice and found that aging led to elevated IL (interleukin)-6 levels and mitochondrial dysfunction, associated with increased mitophagy and the associated protein Parkin. In aortic tissue culture, we found evidence that with aging mitochondrial dysfunction and IL-6 exist in a positive feedback loop. We triggered acute hyperlipidemia in aged and young mice by inducing liver-specific degradation of the LDL (low-density lipoprotein) receptor combined with a 10-week western diet and found that atherogenesis was enhanced in aged wild-type mice. Hyperlipidemia further reduced mitochondrial function and increased the levels of Parkin in the aortas of aged mice but not young mice. Genetic disruption of autophagy in smooth muscle cells of young mice exposed to hyperlipidemia led to increased aortic Parkin and IL-6 levels, impaired mitochondrial function, and enhanced atherogenesis. Importantly, enhancing mitophagy in aged, hyperlipidemic mice via oral administration of spermidine prevented the increase in aortic IL-6 and Parkin, attenuated mitochondrial dysfunction, and reduced atherogenesis. Conclusions: Before hyperlipidemia, aging elevates IL-6 and impairs mitochondrial function within the aorta, associated with enhanced mitophagy and increased Parkin levels. These age-associated changes prime the vasculature to exacerbate atherogenesis upon acute hyperlipidemia. Our work implies that novel therapeutics aimed at improving vascular mitochondrial bioenergetics or reducing inflammation before hyperlipidemia may reduce age-related atherosclerosis.


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 61 ◽  
Author(s):  
Mayumi Takahashi ◽  
Kazuhide Takahashi

Mitochondrial function has been closely associated with normal aging and age-related diseases. Age-associated declines in mitochondrial function, such as changes in oxygen consumption rate, cytochrome c oxidase activity of complex IV, and mitochondrial coenzyme Q (CoQ) levels, begin as early as 12 to 15 months of age in male mouse brains. Brain mitochondrial dysfunction is accompanied by increased accumulation of phosphorylated α-synuclein in the motor cortex and impairment of motor activities, which are similar characteristics of Parkinson’s disease. However, these age-associated defects are completely rescued by the administration of exogenous CoQ10 to middle-aged mice via its water solubilization by emulsification in drinking water. Further efforts to develop strategies to enhance the biological availability of CoQ10 to successfully ameliorate age-related brain mitochondrial dysfunction or neurodegenerative disorders may provide a promising anti-aging agent.


2015 ◽  
Vol 309 (7) ◽  
pp. E670-E678 ◽  
Author(s):  
Bart Wessels ◽  
Nicole M. A. van den Broek ◽  
Jolita Ciapaite ◽  
Sander M. Houten ◽  
Ronald J. A. Wanders ◽  
...  

Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg−1·day−1 l-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by 31P magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by 1H MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1520
Author(s):  
Carsten Esselun ◽  
Bastian Bruns ◽  
Stephanie Hagl ◽  
Rekha Grewal ◽  
Gunter P. Eckert

Introduction: Age-related multifactorial diseases, such as the neurodegenerative Alzheimer’s disease (AD), still remain a challenge to today’s society. One mechanism associated with AD and aging in general is mitochondrial dysfunction (MD). Increasing MD is suggested to trigger other pathological processes commonly associated with neurodegenerative diseases. Silibinin A (SIL) is the main bioactive compound of the Silymarin extract from the Mediterranean plant Silybum marianum (L.) (GAERTN/Compositae). It is readily available as a herbal drug and well established in the treatment of liver diseases as a potent radical scavenger reducing lipid peroxidation and stabilize membrane properties. Recent data suggest that SIL might also act on neurological changes related to MD. Methods: PC12APPsw cells produce low levels of human Aβ and thus act as a cellular model of early AD showing changed mitochondrial function. We investigated whether SIL could affect mitochondrial function by measuring ATP, MMP, as well as respiration, mitochondrial mass, cellular ROS and lactate/pyruvate concentrations. Furthermore, we investigated its effects on the mitochondrial membrane parameters of swelling and fluidity in mitochondria isolated from the brains of mice. Results: In PC12APPsw cells, SIL exhibits strong protective effects by rescuing MMP and ATP levels from SNP-induced mitochondrial damage and improving basal ATP levels. However, SIL did not affect mitochondrial respiration and mitochondrial content. SIL significantly reduced cellular ROS and pyruvate concentrations. Incubation of murine brain mitochondria with SIL significantly reduces Ca2+ induced swelling and improves membrane fluidity. Conclusions: Although OXPHOS activity was unaffected at this early stage of a developing mitochondrial dysfunction, SIL showed protective effects on MMP, ATP- after SNP-insult and ROS-levels in APPsw-transfected PC12 cells. Results from experiments with isolated mitochondria imply that positive effects possibly result from an interaction of SIL with mitochondrial membranes and/or its antioxidant activity. Thus, SIL might be a promising compound to improve cellular health when changes to mitochondrial function occur.


Author(s):  
Srdjan J Sokanovic ◽  
Aleksandar Z Baburski ◽  
Zvezdana Kojic ◽  
Marija L J Medar ◽  
Silvana A Andric ◽  
...  

Abstract Since mitochondria play an essential role in the testosterone biosynthesis, serve as power centers and are a source of oxidative stress, a possible mitochondrial dysfunction could be connected with decreased activity of Leydig cells and lowered testosterone production during aging. Here we chronologically analyzed age-related alterations of mitochondrial function in Leydig cells correlated by the progressive rise of cGMP signaling and with respect to testosterone synthesis. To target cGMP signaling in Leydig cells, acute or long-term in vivo or ex vivo treatments with sildenafil (phosphodiesterase 5 [PDE5] inhibitor) were performed. Aging-related accumulation of cGMP in the Leydig cells is associated with mitochondrial dysfunction illustrated by reduced ATP and steroid production, lowered O2 consumption, increased mitochondrial abundance and mtDNA copies number, decreased expression of genes that regulate mitochondrial biogenesis (Ppargc1a/PGC1a-Tfam-Nrf1/NRF1), mitophagy (Pink1), fusion (Mfn1, Opa1), and increased Nrf2/NRF2. Acute in vivo PDE5 inhibition overaccumulated cGMP and stimulated testosterone but reduced ATP production in Leydig cells from adult, middle-aged, and old rats. The increased ATP/O ratio observed in cells from old compared to adult rats was diminished after stimulation of cGMP signaling. Opposite, long-term PDE5 inhibition decreased cGMP signaling and improved mitochondrial function/dynamics in Leydig cells from old rats. Mitochondrial abundance in Leydig cells decreased while ATP levels increased. Chronic treatment elevated Tfam, Nrf1, Nrf2, Opa1, Mfn1, Drp1, and normalized Pink1 expression. Altogether, long-term PDE5 inhibition prevented age-related NO and cGMP elevation, improved mitochondrial dynamics/function, and testosterone production. The results pointed on cGMP signaling in Leydig cells as a target for pharmacological manipulation of aging-associated changes in mitochondrial function and testosterone production.


2019 ◽  
Vol 133 (18) ◽  
pp. 1993-2004 ◽  
Author(s):  
Andressa Manfredini ◽  
Larissa Constantino ◽  
Milton Castro Pinto ◽  
Monique Michels ◽  
Henrique Burger ◽  
...  

Abstract Background: Several different mechanisms have been proposed to explain long-term cognitive impairment in sepsis survivors. The role of persisting mitochondrial dysfunction is not known. We thus sought to determine whether stimulation of mitochondrial dynamics improves mitochondrial function and long-term cognitive impairment in an experimental model of sepsis. Methods: Sepsis was induced in adult Wistar rats by cecal ligation and perforation (CLP). Animals received intracerebroventricular injections of either rosiglitazone (biogenesis activator), rilmenidine, rapamycin (autophagy activators), or n-saline (sham control) once a day on days 7–9 after the septic insult. Cognitive impairment was assessed by inhibitory avoidance and object recognition tests. Animals were killed 24 h, 3 and 10 days after sepsis with the hippocampus and prefrontal cortex removed to determine mitochondrial function. Results: Sepsis was associated with both acute (24 h) and late (10 days) brain mitochondrial dysfunction. Markers of mitochondrial biogenesis, autophagy and mitophagy were not up-regulated during these time points. Activation of biogenesis (rosiglitazone) or autophagy (rapamycin and rilmenidine) improved brain ATP levels and ex vivo oxygen consumption and the long-term cognitive impairment observed in sepsis survivors. Conclusion: Long-term impairment of brain function is temporally related to mitochondrial dysfunction. Activators of autophagy and mitochondrial biogenesis could rescue animals from cognitive impairment.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 174
Author(s):  
Madison Schank ◽  
Juan Zhao ◽  
Jonathan P. Moorman ◽  
Zhi Q. Yao

According to the WHO, 38 million individuals were living with human immunodeficiency virus (HIV), 25.4 million of which were using antiretroviral therapy (ART) at the end of 2019. Despite ART-mediated suppression of viral replication, ART is not a cure and is associated with viral persistence, residual inflammation, and metabolic disturbances. Indeed, due to the presence of viral reservoirs, lifelong ART therapy is required to control viremia and prevent disease progression into acquired immune deficiency syndrome (AIDS). Successful ART treatment allows people living with HIV (PLHIV) to achieve a similar life expectancy to uninfected individuals. However, recent studies have illustrated the presence of increased comorbidities, such as accelerated, premature immune aging, in ART-controlled PLHIV compared to uninfected individuals. Studies suggest that both HIV-infection and ART-treatment lead to mitochondrial dysfunction, ultimately resulting in cellular exhaustion, senescence, and apoptosis. Since mitochondria are essential cellular organelles for energy homeostasis and cellular metabolism, their compromise leads to decreased oxidative phosphorylation (OXPHOS), ATP synthesis, gluconeogenesis, and beta-oxidation, abnormal cell homeostasis, increased oxidative stress, depolarization of the mitochondrial membrane potential, and upregulation of mitochondrial DNA mutations and cellular apoptosis. The progressive mitochondrial damage induced by HIV-infection and ART-treatment likely contributes to accelerated aging, senescence, and cellular dysfunction in PLHIV. This review discusses the connections between mitochondrial compromise and cellular dysfunction associated with HIV- and ART-induced toxicities, providing new insights into how HIV and current ART directly impact mitochondrial functions and contribute to cellular senescence and aging in PLHIV. Identifying this nexus and potential mechanisms may be beneficial in developing improved therapeutics for treating PLHIV.


2019 ◽  
Vol 25 (40) ◽  
pp. 5588-5596 ◽  
Author(s):  
Tyler B. Waltz ◽  
Elayne M. Fivenson ◽  
Marya Morevati ◽  
Chuanhao Li ◽  
Kevin G. Becker ◽  
...  

Sarcopenia, or age-related muscle decline, occurs in most organisms and burdens both human health and the healthcare system. As our population ages, additional options for treating sarcopenia are needed. Mitochondrial dysfunction is implicated in the onset of sarcopenia, so therapies directed at improving mitochondrial function in muscle should be considered. Many naturally-occurring compounds, derived from commonly consumed foods, possess anti-sarcopenic effects, such asnicotinamide riboside, tomatidine, and Urolithin A. These naturally-occurring compounds can improve mitochondrial health and efficiency by modulating mitochondrial biogenesis, cellular stress resistance, or mitophagy. Further research should assess whether compounds that improve mitochondrial health can attenuate sarcopenia in humans.


Gut ◽  
2020 ◽  
Vol 69 (11) ◽  
pp. 1939-1951 ◽  
Author(s):  
Sevana Khaloian ◽  
Eva Rath ◽  
Nassim Hammoudi ◽  
Elisabeth Gleisinger ◽  
Andreas Blutke ◽  
...  

ObjectiveReduced Paneth cell (PC) numbers are observed in inflammatory bowel diseases and impaired PC function contributes to the ileal pathogenesis of Crohn’s disease (CD). PCs reside in proximity to Lgr5+ intestinal stem cells (ISC) and mitochondria are critical for ISC-renewal and differentiation. Here, we characterise ISC and PC appearance under inflammatory conditions and describe the role of mitochondrial function for ISC niche-maintenance.DesignIleal tissue samples from patients with CD, mouse models for mitochondrial dysfunction (Hsp60Δ/ΔISC) and CD-like ileitis (TNFΔARE), and intestinal organoids were used to characterise PCs and ISCs in relation to mitochondrial function.ResultsIn patients with CD and TNFΔARE mice, inflammation correlated with reduced numbers of Lysozyme-positive granules in PCs and decreased Lgr5 expression in crypt regions. Disease-associated changes in PC and ISC appearance persisted in non-inflamed tissue regions of patients with CD and predicted the risk of disease recurrence after surgical resection. ISC-specific deletion of Hsp60 and inhibition of mitochondrial respiration linked mitochondrial function to the aberrant PC phenotype. Consistent with reduced stemness in vivo, crypts from inflamed TNFΔARE mice fail to grow into organoids ex vivo. Dichloroacetate-mediated inhibition of glycolysis, forcing cells to shift to mitochondrial respiration, improved ISC niche function and rescued the ability of TNFΔARE mice-derived crypts to form organoids.ConclusionWe provide evidence that inflammation-associated mitochondrial dysfunction in the intestinal epithelium triggers a metabolic imbalance, causing reduced stemness and acquisition of a dysfunctional PC phenotype. Blocking glycolysis might be a novel drug target to antagonise PC dysfunction in the pathogenesis of CD.


2021 ◽  
Author(s):  
Robert V Musci ◽  
Kendra M Andrie ◽  
Maureen A Walsh ◽  
Zackary J Valenti ◽  
Maryam F Afzali ◽  
...  

Musculoskeletal dysfunction is an age-related syndrome associated with impaired mitochondrial function and proteostasis. However, few interventions have tested targeting two drivers of musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that stimulates transcription of cytoprotective genes and improves mitochondrial function. We hypothesized daily treatment with a Nrf2 activator in Hartley guinea pigs, a model of age-related musculoskeletal dysfunction, attenuates the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis, preserving musculoskeletal function. We treated 2-month- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical Nrf2 activator PB125 (Nrf2a). Longitudinal assessments of voluntary mobility were measured using Any-Maze™ open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in permeabilized soleus muscles was measured using ex vivo high resolution respirometry. In both sexes, Nrf2a 1) increased electron transfer system capacity; 2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and 3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial, and cytosolic subfractions of the soleus. These improvements were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, these results demonstrate that treatment with an oral Nrf2 activator contributes to maintenance of skeletal muscle mitochondrial function and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these improvements are also accompanied by slowed progression of other aspects of musculoskeletal decline.


Sign in / Sign up

Export Citation Format

Share Document