scholarly journals A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy Warwick ◽  
Marcel H. Schulz ◽  
Stefan Günther ◽  
Ralf Gilsbach ◽  
Antonio Neme ◽  
...  

AbstractThe transcription factor vitamin D receptor (VDR) is the high affinity nuclear target of the biologically active form of vitamin D3 (1,25(OH)2D3). In order to identify pure genomic transcriptional effects of 1,25(OH)2D3, we used VDR cistrome, transcriptome and open chromatin data, obtained from the human monocytic cell line THP-1, for a novel hierarchical analysis applying three bioinformatics approaches. We predicted 75.6% of all early 1,25(OH)2D3-responding (2.5 or 4 h) and 57.4% of the late differentially expressed genes (24 h) to be primary VDR target genes. VDR knockout led to a complete loss of 1,25(OH)2D3–induced genome-wide gene regulation. Thus, there was no indication of any VDR-independent non-genomic actions of 1,25(OH)2D3 modulating its transcriptional response. Among the predicted primary VDR target genes, 47 were coding for transcription factors and thus may mediate secondary 1,25(OH)2D3 responses. CEBPA and ETS1 ChIP-seq data and RNA-seq following CEBPA knockdown were used to validate the predicted regulation of secondary vitamin D target genes by both transcription factors. In conclusion, a directional network containing 47 partly novel primary VDR target transcription factors describes secondary responses in a highly complex vitamin D signaling cascade. The central transcription factor VDR is indispensable for all transcriptome-wide effects of the nuclear hormone.

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1140 ◽  
Author(s):  
Oona Koivisto ◽  
Andrea Hanel ◽  
Carsten Carlberg

The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), modulates innate and adaptive immunity via genes regulated by the transcription factor vitamin D receptor (VDR). In order to identify the key vitamin D target genes involved in these processes, transcriptome-wide datasets were compared, which were obtained from a human monocytic cell line (THP-1) and peripheral blood mononuclear cells (PBMCs) treated in vitro by 1,25(OH)2D3, filtered using different approaches, as well as from PBMCs of individuals supplemented with a vitamin D3 bolus. The led to the genes ACVRL1, CAMP, CD14, CD93, CEBPB, FN1, MAPK13, NINJ1, LILRB4, LRRC25, SEMA6B, SRGN, THBD, THEMIS2 and TREM1. Public epigenome- and transcriptome-wide data from THP-1 cells were used to characterize these genes based on the level of their VDR-driven enhancers as well as the level of the dynamics of their mRNA production. Both types of datasets allowed the categorization of the vitamin D target genes into three groups according to their role in (i) acute response to infection, (ii) infection in general and (iii) autoimmunity. In conclusion, 15 genes were identified as major mediators of the action of vitamin D in innate and adaptive immunity and their individual functions are explained based on different gene regulatory scenarios.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A820-A820
Author(s):  
Andrzej Slominski ◽  
Tae-Kang Kim ◽  
Shariq Qayyum ◽  
Yuwei Song ◽  
Zorica Janjetovic ◽  
...  

Abstract New pathways of vitamin D3 (D3) activation initiated by CYP11A1 and involving other CYPs have been discovered. At least 15 hydroxyderivatives, including 20(OH)D3 as the major product, are generated by these pathways (1,2) with some being present in human serum, epidermis, and pig adrenals. CYP11A1 can also metabolize 7-dehydrocholesterol to produce 7-dehydropregnenolone, which can be further modified by steroidogenic enzymes generating Δ7-steroids (1,2). Lastly, CYP11A1 and CYP27A1 act on lumisterol (L3) producing at least 9 biologically active derivatives (1,2). Thus, new pathways generating a large number of biologically active secosteroids and lumisterol-derivatives have now been described. These compounds interact with the vitamin D receptor (VDR), retinoic acid receptors (RORs) α and γ, and the aryl hydrocarbon receptor (AhR)(1). These findings challenge dogmas that lumisterol is biologically inactive and that 1,25(OH)2D3 is the only active form of D3 exerting its effects exclusively through interaction with the VDR. In view of the above and since liver X receptors (LXRs) can be activated by oxysterols, we investigated the interactions of novel products of L3 and D3 metabolism with LXRs. Molecular docking, using crystal structures of the ligand binding domains (LBDs) of LXRα and β, revealed high docking scores for L3 and D3 hydroxymetabolites, like those of the natural ligands, predicting good receptor binding. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second major nuclear receptor signaling pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. The involvement of LXRs was validated by the induction of several genes downstream of LXR. Furthermore, L3 and D3-hydroxyderivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes. For keratinocytes, enhanced expression of LXR target genes was also observed supporting the involvement of LXR. Importantly, L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and β in LanthaScreen TR-FRET LXRα and β coactivator assays. The majority of metabolites functioned as LXRα/β agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRβ. Molecular dynamics simulations performed for selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed overlapping and different interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs changes the accepted paradigms on their biological role and mechanism of action. 1. Cell Biochem Biophys. 2020;78(2):165-180. 2. J Steroid Biochem Mol Biol. 2019;186:4-21.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea Hanel ◽  
Antonio Neme ◽  
Marjo Malinen ◽  
Emmi Hämäläinen ◽  
Henna-Riikka Malmberg ◽  
...  

AbstractVitamin D is essential for the function of the immune system. In this study, we treated peripheral blood mononuclear cells (PBMCs) of healthy adults with the biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) using two different approaches: single repeats with PBMCs obtained from a cohort of 12 individuals and personalized analysis based on triplicates of five study participants. This identified 877 (cohort approach) and 3951 (personalized approach) genes that significantly (p < 0.05) changed their expression 24 h after 1,25(OH)2D3 stimulation. From these, 333 and 1232 were classified as supertargets, a third of which were identified as novel. Individuals differed largely in their vitamin D response not only by the magnitude of expression change but also by their personal selection of (super)target genes. Functional analysis of the target genes suggested the overarching role of vitamin D in the regulation of metabolism, proliferation and differentiation, but in particular in the control of functions mediated by the innate and adaptive immune system, such as responses to infectious diseases and chronic inflammatory disorders. In conclusion, immune cells are an important target of vitamin D and common genes may serve as biomarkers for personal responses to the micronutrient.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
R. A. G. Khammissa ◽  
J. Fourie ◽  
M. H. Motswaledi ◽  
R. Ballyram ◽  
J. Lemmer ◽  
...  

Vitamin D plays an important role in calcium homeostasis and bone metabolism, with the capacity to modulate innate and adaptive immune function, cardiovascular function, and proliferation and differentiation of both normal and malignant keratinocytes. 1,25(OH)2D, the biologically active form of vitamin D, exerts most of its functions through the almost universally distributed nuclear vitamin D receptor (VDR). Upon stimulation by 1,25(OH)2D, VDR forms a heterodimer with the retinoid X receptor (RXR). In turn, VDR/RXR binds to DNA sequences termed vitamin D response elements in target genes, regulating gene transcription. In order to exert its biological effects, VDR signalling interacts with other intracellular signalling pathways. In some cases 1,25(OH)2D exerts its biological effects without regulating either gene expression or protein synthesis. Although the regulatory role of vitamin D in many biological processes is well documented, there is not enough evidence to support the therapeutic use of vitamin D supplementation in the prevention or treatment of infectious, immunoinflammatory, or hyperproliferative disorders. In this review we highlight the effects of 1,25(OH)2D on bone and calcium homeostasis, on cancer, and refer to its effects on the cardiovascular and immune systems.


1996 ◽  
Vol 316 (2) ◽  
pp. 361-371 ◽  
Author(s):  
Sylvia CHRISTAKOS ◽  
Mihali RAVAL-PANDYA ◽  
Roman P. WERNYJ ◽  
Wen YANG

The biologically active metabolite of vitamin D (cholecalciferol), i.e. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a secosteroid hormone whose mode of action involves stereospecific interaction with an intracellular receptor protein (vitamin D receptor; VDR). 1,25(OH)2D3 is known to be a principal regulator of calcium homeostasis, and it has numerous other physiological functions including inhibition of proliferation of cancer cells, effects on hormone secretion and suppression of T-cell proliferation and cytokine production. Although the exact mechanisms involved in mediating many of the different effects of 1,25(OH)2D3 are not completely defined, genomic actions involving the VDR are clearly of major importance. Similar to other steroid receptors, the VDR is phosphorylated; however, the exact functional role of the phosphorylation of the VDR remains to be determined. The VDR has been reported to be regulated by 1,25(OH)2D3 and also by activation of protein kinases A and C, suggesting co-operativity between signal transduction pathways and 1,25(OH)2D3 action. The VDR binds to vitamin D-responsive elements (VDREs) in the 5´ flanking region of target genes. It has been suggested that VDR homodimerization can occur upon binding to certain VDREs but that the VDR/retinoid X receptor (RXR) heterodimer is the functional transactivating species. Other factors reported to be involved in VDR-mediated transcription include chicken ovalbumin upstream promoter (COUP) transcription factor, which is involved in active silencing of transcription, and transcription factor IIB, which has been suggested to play a major role following VDR/RXR heterodimerization. Newly identified vitamin D-dependent target genes include those for Ca2+/Mg2+-ATPase in the intestine and p21 in the myelomonocytic U937 cell line. Elucidation of the mechanisms involved in the multiple actions of 1,25(OH)2D3 will be an active area of future research.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


2013 ◽  
Vol 368 (1632) ◽  
pp. 20130018 ◽  
Author(s):  
Andrea I. Ramos ◽  
Scott Barolo

In the era of functional genomics, the role of transcription factor (TF)–DNA binding affinity is of increasing interest: for example, it has recently been proposed that low-affinity genomic binding events, though frequent, are functionally irrelevant. Here, we investigate the role of binding site affinity in the transcriptional interpretation of Hedgehog (Hh) morphogen gradients . We noted that enhancers of several Hh-responsive Drosophila genes have low predicted affinity for Ci, the Gli family TF that transduces Hh signalling in the fly. Contrary to our initial hypothesis, improving the affinity of Ci/Gli sites in enhancers of dpp , wingless and stripe , by transplanting optimal sites from the patched gene, did not result in ectopic responses to Hh signalling. Instead, we found that these enhancers require low-affinity binding sites for normal activation in regions of relatively low signalling. When Ci/Gli sites in these enhancers were altered to improve their binding affinity, we observed patterning defects in the transcriptional response that are consistent with a switch from Ci-mediated activation to Ci-mediated repression. Synthetic transgenic reporters containing isolated Ci/Gli sites confirmed this finding in imaginal discs. We propose that the requirement for gene activation by Ci in the regions of low-to-moderate Hh signalling results in evolutionary pressure favouring weak binding sites in enhancers of certain Hh target genes.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Yu-ping Zhu ◽  
Ze Zheng ◽  
Shaofan Hu ◽  
Xufang Ru ◽  
Zhuo Fan ◽  
...  

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7152
Author(s):  
Yaqi Hao ◽  
Xiumei Zong ◽  
Pan Ren ◽  
Yuqi Qian ◽  
Aigen Fu

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.


Sign in / Sign up

Export Citation Format

Share Document