scholarly journals Genome-wide identification and expression analysis of the plant specific LIM genes in Gossypium arboreum under phytohormone, salt and pathogen stress

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. P. Raghavendra ◽  
J. Das ◽  
R. Kumar ◽  
S. P. Gawande ◽  
H. B. Santosh ◽  
...  

AbstractAsiatic cotton (Gossypium arboreum) cultivated as ‘desicotton’ in India, is renowned for its climate resilience and robustness against biotic and abiotic stresses. The genome ofG. arboreumis therefore, considered as a valued reserve of information for discovering novel genes or gene functions for trait improvements in the present context of cotton cultivation world-wide. In the present study, we carried out genome-wide analysis ofLIMgene family in desi cotton and identified twenty LIM domain proteins (GaLIMs) which include sixteen animals CRP-like GaLIMs and four plant specific GaLIMs with presence (GaDA1) or absence (GaDAR) of UIM (Ubiquitin Interacting Motifs). Among the sixteen CRP-like GaLIMs, eleven had two conventional LIM domains while, five had single LIM domain which was not reported inLIMgene family of the plant species studied, except inBrassica rapa.Phylogenetic analysis of these twenty GaLIM proteins in comparison with LIMs of Arabidopsis, chickpea and poplar categorized them into distinct αLIM1, βLIM1, γLIM2, δLIM2 groups in CRP-like LIMs, and GaDA1 and GaDAR in plant specific LIMs group. Domain analysis had revealed consensus [(C-X2-C-X17-H-X2-C)-X2-(C-X2-C-X17-C-X2-H)] and [(C-X2-C-X17-H-X2-C)-X2-(C-X4-C-X15-C-X2-H)] being conserved as first and/or second LIM domains of animal CRP-like GaLIMs, respectively. Interestingly, single LIM domain containing GaLIM15 was found to contain unique consensus with longer inter-zinc-motif spacer but shorter second zinc finger motif. All twentyGaLIMsshowed variable spatio-temporal expression patterns and accordingly further categorized into distinct groups of αLIM1, βLIM1, γLIM2 δLIM2 and plant specific LIM (DA1/DAR). For the first time, response ofGaDA1/DARunder the influence of biotic and abiotic stresses were studied in cotton, involving treatments with phytohormones (Jasmonic acid and Abscisic acid), salt (NaCl) and wilt causing pathogen (Fusarium oxysporum). Expressions patterns ofGaDA1/DARshowed variable response and identifiedGaDA2as a probable candidate gene for stress tolerance inG. arboreum.

Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


Genome ◽  
2019 ◽  
Vol 62 (9) ◽  
pp. 609-622 ◽  
Author(s):  
Weidong Zhu ◽  
Wei Tan ◽  
Qiulin Li ◽  
Xiugui Chen ◽  
Junjuan Wang ◽  
...  

Mitogen-activated protein kinase kinase kinases (MAPKKKs) are important components of MAPK cascades, which have different functions during developmental processes and stress responses. To date, there has been no systematic investigation of this gene family in the diploid cotton Gossypium arboreum L. In this study, a genome-wide survey was performed that identified 78 MAPKKK genes in G. arboreum. Phylogenetic analysis classified these genes into three subgroups: 14 belonged to ZIK, 20 to MEKK, and 44 to Raf. Chromosome location, phylogeny, and the conserved protein motifs of the MAPKKK gene family in G. arboreum were analyzed. The MAPKKK genes had a scattered genomic distribution across 13 chromosomes. The members in the same subfamily shared similar conserved motifs. The MAPKKK expression patterns were analyzed in mature leaves, stems, roots, and at different ovule developmental stages, as well as under salt and drought stresses. Transcriptome analysis showed that 76 MAPKKK genes had different transcript accumulation patterns in the tested tissues and 38 MAPKKK genes were differentially expressed in response to salt and drought stresses. These results lay the foundation for understanding the complex mechanisms behind MAPKKK-mediated developmental processes and abiotic stress-signaling transduction pathways in cotton.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8404 ◽  
Author(s):  
Gaofeng Zhang ◽  
Caimeng Yue ◽  
Tingting Lu ◽  
Lirong Sun ◽  
Fushun Hao

Plasma membrane NADPH oxidases, also named respiratory burst oxidase homologues (Rbohs), play pivotal roles in many aspects of growth and development, as well as in responses to hormone signalings and various biotic and abiotic stresses. Although Rbohs family members have been identified in several plants, little is known about Rbohs in Gossypium. In this report, we characterized 13, 13, 26 and 19 Rbohs in G. arboretum, G. raimondii, G. hirsutum and G. barbadense, respectively. These Rbohs were conservative in physical properties, structures of genes and motifs. The expansion and evolution of the Rbohs dominantly depended on segmental duplication, and were under the purifying selection. Transcription analyses showed that GhRbohs were expressed in various tissues, and most GhRbohs were highly expressed in flowers. Moreover, different GhRbohs had very diverse expression patterns in response to ABA, high salinity, osmotic stress and heat stress. Some GhRbohs were preferentially and specifically expressed during ovule growth and fiber formation. These results suggest that GhRbohs may serve highly differential roles in mediating ABA signaling, in acclimation to environmental stimuli, and in fiber growth and development. Our findings are valuable for further elucidating the functions and regulation mechanisms of the Rbohs in adaptation to diverse stresses, and in growth and development in Gossypium.


2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1855
Author(s):  
Dan Luo ◽  
Ziqi Jia ◽  
Yong Cheng ◽  
Xiling Zou ◽  
Yan Lv

The β-amylase (BAM) gene family, known for their property of catalytic ability to hydrolyze starch to maltose units, has been recognized to play critical roles in metabolism and gene regulation. To date, BAM genes have not been characterized in oil crops. In this study, the genome-wide survey revealed the identification of 30 BnaBAM genes in Brassica napus L. (B. napus L.), 11 BraBAM genes in Brassica rapa L. (B. rapa L.), and 20 BoBAM genes in Brassica oleracea L. (B. oleracea L.), which were divided into four subfamilies according to the sequence similarity and phylogenetic relationships. All the BAM genes identified in the allotetraploid genome of B. napus, as well as two parental-related species (B. rapa and B. oleracea), were analyzed for the gene structures, chromosomal distribution and collinearity. The sequence alignment of the core glucosyl-hydrolase domains was further applied, demonstrating six candidate β-amylase (BnaBAM1, BnaBAM3.1-3.4 and BnaBAM5) and 25 β-amylase-like proteins. The current results also showed that 30 BnaBAMs, 11 BraBAMs and 17 BoBAMs exhibited uneven distribution on chromosomes of Brassica L. crops. The similar structural compositions of BAM genes in the same subfamily suggested that they were relatively conserved. Abiotic stresses pose one of the significant constraints to plant growth and productivity worldwide. Thus, the responsiveness of BnaBAM genes under abiotic stresses was analyzed in B. napus. The expression patterns revealed a stress-responsive behaviour of all members, of which BnaBAM3s were more prominent. These differential expression patterns suggested an intricate regulation of BnaBAMs elicited by environmental stimuli. Altogether, the present study provides first insights into the BAM gene family of Brassica crops, which lays the foundation for investigating the roles of stress-responsive BnaBAM candidates in B. napus.


2021 ◽  
Vol 22 (22) ◽  
pp. 12515
Author(s):  
Yisheng Fang ◽  
Dong Cao ◽  
Hongli Yang ◽  
Wei Guo ◽  
Wenqi Ouyang ◽  
...  

The LOR (LURP-one related) family genes encode proteins containing a conserved LOR domain. Several members of the LOR family genes are required for defense against Hyaloperonospora parasitica (Hpa) in Arabidopsis. However, there are few reports of LOR genes in response to abiotic stresses in plants. In this study, a genome-wide survey and expression levels in response to abiotic stresses of 36 LOR genes from Glycine max were conducted. The results indicated that the GmLOR gene family was divided into eight subgroups, distributed on 14 chromosomes. A majority of members contained three extremely conservative motifs. There were four pairs of tandem duplicated GmLORs and nineteen pairs of segmental duplicated genes identified, which led to the expansion of the number of GmLOR genes. The expansion patterns of the GmLOR family were mainly segmental duplication. A heatmap of soybean LOR family genes showed that 36 GmLOR genes exhibited various expression patterns in different tissues. The cis-acting elements in promoter regions of GmLORs include abiotic stress-responsive elements, such as dehydration-responsive elements and drought-inducible elements. Real-time quantitative PCR was used to detect the expression level of GmLOR genes, and most of them were expressed in the leaf or root except that GmLOR6 was induced by osmotic and salt stresses. Moreover, GmLOR4/10/14/19 were significantly upregulated after PEG and salt treatments, indicating important roles in the improvement of plant tolerance to abiotic stress. Overall, our study provides a foundation for future investigations of GmLOR gene functions in soybean.


2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


2020 ◽  
Author(s):  
Chao Zhang ◽  
Yanning Tan ◽  
Jemaa Essemine ◽  
Ni Li ◽  
Zhongxiao Hu ◽  
...  

Abstract Background: Stress repressive zinc finger (SRZ) gene family in rice is one of the plant defense gene families that play a pivotal role in plant growth regulation and development, particularly under stressful conditions. However, there is no genome-wide survey regarding SRZ gene family in rice (OsSRZ) till date. Results: We studied, herein, this gene family by performing a genome-wide screening and we identified 25 OsSRZ gene members using Japonica cultivar as an investigating material. Their chromosome localizations, phylogenetic relationships, genomic structures, conserved domains and promoter cis-regulatory elements were analyzed. Besides, their spatio-temporal expression profiles and expression patterns under various hormones and stress treatments were also assessed. Based on the phylogeny and domain constitution, the OsSRZ gene family was classified into five groups (I-V). Conserved domains analysis demonstrates that OsSRZ proteins contain at least one highly conserved SRZ domain. The analysis of expression patterns of the SRZ gene family reveal that OsSRZ genes display tissue-specific expression patterns at various rice developmental stages and exhibit differential responses to both phytohormones and abiotic stresses. Furthermore, q-RT-PCR analysis reveals that Os SRZ genes exhibit different expression patterns under various abiotic stresses. We notice the presence of a single specific gene considerably or strongly up-regulated for each kind of abiotic stress. Over 12 OsSRZ genes analyzed with q-RT-PCR, solely 4 genes (OsSRZ 1, 2, 10 and 11) were found to be substantially or strongly up-regulated following abiotic stress. Notably, OsSRZ 10 and 11 were up-regulated under heat stress by 7 and 5 times, respectively. However, OsSRZ2 was up-regulated by 7 and 3.5 folds under salt and cold stresses, respectively. Interestingly, OsSRZ1 was up-regulated by about 3~11 times in 24 h following artificial oxidative stress application using 1 mM H2O2 . Conclusions: We deduce that some members of OsSRZ gene family function as abiotic stress marker in rice. At the genomic level and expression pattern, our genome-wide survey could provide promising and valuable insights to widen and strengthen further future investigation by leading a cutting edge research regarding the biological and molecular functions of this gene family.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingjing Zhang ◽  
Aimin Wu ◽  
Hengling Wei ◽  
Pengbo Hao ◽  
Qi Zhang ◽  
...  

Abstract Background Histone deacetylases (HDACs) catalyze histone deacetylation and suppress gene transcription during various cellular processes. Within the superfamily of HDACs, RPD3/HDA1-type HDACs are the most studied, and it is reported that RPD3 genes play crucial roles in plant growth and physiological processes. However, there is a lack of systematic research on the RPD3/HDA1 gene family in cotton. Results In this study, genome-wide analysis identified 9, 9, 18, and 18 RPD3 genes in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. This gene family was divided into 4 subfamilies through phylogenetic analysis. The exon-intron structure and conserved motif analysis revealed high conservation in each branch of the cotton RPD3 genes. Collinearity analysis indicated that segmental duplication was the primary driving force during the expansion of the RPD3 gene family in cotton. There was at least one presumed cis-element related to plant hormones in the promoter regions of all GhRPD3 genes, especially MeJA- and ABA-responsive elements, which have more members than other hormone-relevant elements. The expression patterns showed that most GhRPD3 genes had relatively high expression levels in floral organs and performed higher expression in early-maturity cotton compared with late-maturity cotton during flower bud differentiation. In addition, the expression of GhRPD3 genes could be significantly induced by one or more abiotic stresses as well as exogenous application of MeJA or ABA. Conclusions Our findings reveal that GhRPD3 genes may be involved in flower bud differentiation and resistance to abiotic stresses, which provides a basis for further functional verification of GhRPD3 genes in cotton development and a foundation for breeding better early-maturity cotton cultivars in the future.


Sign in / Sign up

Export Citation Format

Share Document