scholarly journals Gut probiotic bacteria of Barbonymus gonionotus improve growth, hematological parameters and reproductive performances of the host

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Abdus Salam ◽  
Md. Ariful Islam ◽  
Sulav Indra Paul ◽  
Md. Mahbubur Rahman ◽  
Mohammad Lutfar Rahman ◽  
...  

AbstractThis study aimed to isolate and identify probiotic bacteria from the gut of Barbonymus gonionotus and evaluate their effects on growth, hematological parameters, and breeding performances of the host. Five probiotic bacteria viz. Enterococcus xiangfangensis (GFB-1), Pseudomonas stutzeri (GFB-2), Bacillus subtilis (GFB-3), Citrobacter freundii (GFB-4), and P. aeruginosa (GFB-5) were isolated and identified using 16S rRNA gene sequencing. Application of a consortium of probiotic strains (1–3 × 1.35 × 109 CFU kg−1) or individual strain such as GFB-1 (1.62 × 109 CFU kg−1), GFB-2 (1.43 × 109 CFU kg−1), GFB-3 (1.06 × 109 CFU kg−1), GFB-4 (1.5 × 109 CFU kg−1) or GFB-5 (1.43 × 109 CFU kg−1feed) through feed significantly improved growth, histological and hematological parameters and reproductive performances of B. gonionotus compared to untreated control. Moreover, the application of these probiotics significantly increased gut lactic acid bacteria and activities of digestive enzymes but did not show any antibiotic resistance nor any cytotoxicity in vitro. The highest beneficial effects on treated fishes were recorded by the application of GFB-1, GFB-2, GFB-3, and a consortium of these bacteria (T2). This is the first report of the improvement of growth and health of B. gonionotus fishes by its gut bacteria.

Author(s):  
Wen-Yang Lin ◽  
Yi-Wei Kuo ◽  
Ching-Wei Chen ◽  
Yu-Fen Huang ◽  
Chen-Hung Hsu ◽  
...  

AbstractOral-nasal mucosal immunity plays a crucial role in protecting the body against bacterial and viral invasion. Safe probiotic products have been used to enhance human immunity and oral health. In this study, we verified the beneficial effects of mixed viable probiotic tablets, consisting of Lactobacillus salivarius subsp. salicinius AP-32, Bifidobacterium animalis subsp. lactis CP-9, and Lactobacillus paracasei ET-66, and heat-killed probiotic tablets, consisting of L. salivarius subsp. salicinius AP-32 and L. paracasei ET-66, on oral immunity among 45 healthy participants. Participants were randomly divided into viable probiotic, heat-killed probiotic, and placebo groups. The administration of treatment lasted for 4 weeks. Saliva samples were collected at Weeks 0, 2, 4, and 6, and Lactobacillus, Bifidobacterium and Streptococcus mutans populations and IgA concentration were measured. IgA concentrations, levels of TGF-beta and IL-10 in PBMCs cells were quantified by ELISA method. Results showed that salivary IgA levels were significantly increased on administration of both the viable (119.30 ± 12.63%, ***P < 0.001) and heat-killed (116.78 ± 12.28%, ***P < 0.001) probiotics for 4 weeks. Among three probiotic strains, AP-32 would effectively increase the levels of TGF-beta and IL-10 in PBMCs. The oral pathogen Streptococcus mutans was significantly reduced on viable probiotic tablet administration (49.60 ± 31.01%, ***P < 0.001). The in vitro antibacterial test confirmed that viable probiotics effectively limited the survival rate of oral pathogens. Thus, this clinical pilot study demonstrated that oral probiotic tablets both in viable form or heat-killed form could exert beneficial effects on oral immunity via IL-10, TGB-beta mediated IgA secretion. The effective dosage of viable probiotic content in the oral tablet was 109 CFUs/g and the heat-killed oral tablet was 1 × 1010 cells/g.


2007 ◽  
Vol 70 (10) ◽  
pp. 2417-2421 ◽  
Author(s):  
ELEONORA DEHLINK ◽  
KONRAD J. DOMIG ◽  
CHRISTINE LOIBICHLER ◽  
ELKE KAMPL ◽  
THOMAS EIWEGGER ◽  
...  

The mode of inactivation of probiotic bacteria may profoundly affect their immune-modulatory properties to the point of reversal of effects in in vitro human intestinal epithelial-like cell cultures (Caco-2). To further investigate the influence of inactivation treatment on cytokine production, three probiotic strains were evaluated—live, heat-inactivated, and formalininactivated strains—for their impact on interleukin (IL) 6, IL-8, and IL-10 production in Caco-2–leucocyte cocultures. The tested bacteria induced strain-specific production of IL-6, IL-8, and IL-10. No suppressive effects on cytokine synthesis were observed. Live microorganisms seemed to be slightly more potent inducers of cytokine production than nonviable strains, but differences to inactivated bacteria were not statistically significant. Our results indicate that heat and formalin treatments of probiotic microorganisms are equivalent inactivation methods in terms of induction of IL-6, IL-8, and IL-10 production in Caco-2–peripheral blood mononuclear cell cocultures and do not invert immune-modulatory effects.


2018 ◽  
Vol 6 (3) ◽  
pp. 90 ◽  
Author(s):  
Hasan Celebioglu ◽  
Birte Svensson

The key role of diet and environment in human health receives increasing attention. Thus functional foods, probiotics, prebiotics, and synbiotics with beneficial effects on health and ability to prevent diseases are in focus. The efficacy of probiotic bacteria has been connected with their adherence to the host epithelium and residence in the gut. Several in vitro techniques are available for analyzing bacterial interactions with mucin and intestinal cells, simulating adhesion to the host in vivo. Proteomics has monitored and identified proteins of probiotic bacteria showing differential abundance elicited in vitro by exposure to food components, including potential prebiotics (e.g., certain carbohydrates, and plant polyphenols). While adhesion of probiotic bacteria influenced by various environmental factors relevant to the gastrointestinal tract has been measured previously, this was rarely correlated with changes in the bacterial proteome induced by dietary nutrients. The present mini-review deals with effects of selected emerging prebiotics, food components and ingredients on the adhesion of probiotic lactobacilli to mucin and gut epithelial cells and concomitant abundancy changes of specific bacterial proteins. Applying this in vitro synbiotics-like approach enabled identification of moonlighting and other surface-located proteins of Lactobacillus acidophilus NCFM that are possibly associated with the adhesive mechanism.


2001 ◽  
Vol 110 (10) ◽  
pp. 946-951 ◽  
Author(s):  
Rolien H. Free ◽  
G. Jolanda Elving ◽  
Ranny van Weissenbruch ◽  
Henk J. Busscher ◽  
Henny C. vander Mei ◽  
...  

In order to determine the influence of probiotic bacteria on biofilm formation on Groningen and Provox 2 voice prostheses in an artificial throat, we grew biofilms on both types of voice prostheses and exposed them 3 times daily to a probiotic bacterial suspension. As a control, we perfused an artificial throat with phosphate-buffered saline solution. Perfusion with Lactococcus lactis 53 suspension reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 17% and 22% and on the Provox 2 prostheses to 19% and 45%, compared to the number of colony-forming units on the control prosthesis, which was set at 100%. A suspension of Streptococcus thermophilus b reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 53% and 33% and on the Provox 2 prostheses to 14% and 0%, as compared to the control prosthesis. All other probiotic strains tested caused some reduction in the percentages of bacteria or yeasts, but strong differences between the types of prostheses were observed. In conclusion, L lactis 53 and S thermophilus b strongly reduce the occurrence of yeasts and bacteria in voice prosthetic biofilms.


2021 ◽  
Vol 9 (8) ◽  
pp. 1694
Author(s):  
Florinda Fratianni ◽  
Maria Neve Ombra ◽  
Antonio d’Acierno ◽  
Lucia Caputo ◽  
Giuseppe Amato ◽  
...  

We evaluated the polyphenol content and the α-glucosidase activity exhibited by different monofloral honeys of Italian origin. Their capacity to act on different pathogenic (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) as well as probiotic bacteria (Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus rhamnosus) was also assessed. Total polyphenols varied between 110.46 μg/g of fresh product (rhododendron honey) and 552.29 μg/g of fresh product (strawberry tree honey). Such result did not correspond to a parallel inhibitory α-glycosidase activity that, in each case was never higher than 33 μg/mL. Honeys were differently capable to fight the biofilm formation of the pathogens (inhibition up to 93.27%); they inhibited the in vitro adhesive process (inhibition up to 84.27%), and acted on mature biofilm (with values up to 76.64%). Their effect on bacterial metabolism was different too. Honeys were ineffective to inhibit E. coli mature biofilm nor to act on its metabolism. The action of the honey on probiotic strains seemed almost always stimulate their growth. Thus, these monofloral honeys might exhibit effects on human health and act positively as prebiotics.


2001 ◽  
Vol 8 (2) ◽  
pp. 293-296 ◽  
Author(s):  
M. Juntunen ◽  
P. V. Kirjavainen ◽  
A. C. Ouwehand ◽  
S. J. Salminen ◽  
E. Isolauri

ABSTRACT The concentration of fecal mucin and the adhesion of specific probiotics and their combinations in the intestinal mucus of infants during and after rotavirus diarrhea and in healthy children were determined. Mucus was prepared from fecal samples from 20 infants during and after rotavirus diarrhea and from 10 healthy age-matched children. Mucin concentration was determined, and the adhesion of five probiotics—Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Lactobacillus paracasei F19,Lactobacillus acidophilus LA5, and Bifidobacterium lactis Bb12—and their combinations was tested in vitro. The mean concentrations of fecal mucin during and after rotavirus diarrhea, 15.2 and 14.1 mg/g, were comparable to that in healthy children, 14.9 mg/g. The adherence of probiotics ranged from 1 to 34% in healthy subjects as indicated for the following strains: L. rhamnosus GG, 34%; B. lactis Bb12, 31%; L. acidophilus LA5, 4%; L. paracasei F19, 3%; and L. caseiShirota, 1% (P = 0.0001). The distinctive pattern of probiotic adherence was not influenced by rotavirus diarrhea. The adhesion of Bb12 in the presence of GG increased from 31 to 39% in healthy infants (P = 0.018) and in episodes of diarrhea increased from 26 to 44% (P = 0.001). Rotavirus diarrhea does not decrease the production of fecal mucin or with respect to the adhesion of probiotic bacteria tested in vitro. Combination of specific probiotic strains may enhance adherence in a synergistic manner. Optimal clinical application of these interactions may offer novel therapeutic guidelines for the treatment and prevention of gastrointestinal infections.


2001 ◽  
Vol 66 (6) ◽  
pp. 856-859 ◽  
Author(s):  
A.C. Ouwehand ◽  
S. Tolkko ◽  
S. Salminen

2014 ◽  
Vol 4 (8) ◽  
pp. 370 ◽  
Author(s):  
Ana Andino ◽  
Nan Zhang ◽  
Sandra Diaz-Sanchez ◽  
Carrie Yard ◽  
Sean Pendleton ◽  
...  

Background: Probiotic strains of bacteria can prevent Salmonella from causing disease by preventing the pathogen from colonizing the intestines. Two strains of probiotics, Lactobacillus acidophilius and Pediococcus spp, that were obtained from poultry fecal samples have been shown to be efficacious in poultry. The objective of this study was to determine if these strains of probiotics could prevent salmonellosis in a mouse model.Methods: First, both strains of probiotics were evaluated for in vitro efficacy to inhibit the growth of and interfere with virulence gene regulation in Salmonella enterica. For in vivo efficacy, mice was used which models Typhoid illness. Mice were divided into 2 groups: Control and treatment, Lactobacillus and Pediococcus (LP; 108 Log CFU). Two experiments were conducted. In the first experiment, the mice were treated with LP in water for the first two days of the experiment and challenged with Salmonella at day three. In the second experiment, the LP treatment was given in the water for 10 days and challenge was performed on day 11. In both experiments, at day 20 post-challenge, all mice were sacrificed, intestinal tracts and organs removed and cultured for Salmonella. Results: The probiotic strains inhibited the growth of Salmonella and down-regulation of virulence genes was noted, but dependent on the strain of Salmonella being evaluated. For the in vivo experiment, the probiotics did not afford the mice protection from infection and increasing the length of time the probiotics were administered did not improve the efficacy of the probiotics.Conclusions: It appears that these strains of probiotic bacteria are effective against Salmonella in vitro. However, these isolates did not afford protection from Salmonella infection to mice which may be due to host specifity as these isolates were obtained from poultry.Keywords: Salmonella, Probiotic, Lactobacillus, Pediococcus, Mice


2016 ◽  
Vol 7 (1) ◽  
pp. 111-118 ◽  
Author(s):  
I. Besseling-van der Vaart ◽  
M.D. Heath ◽  
F. Guagnini ◽  
M.F. Kramer

The beneficial effects of probiotics are currently the subject of extensive studies in health and medical research. The aim of this research was to specifically design a new probiotic formulation for supplementation in people suffering from food intolerance. The selection of strains was focussed on the capacity to influence mechanisms of action that are important in development of food intolerance with the following parameters measure: in vitro capacity to produce β-galactosidase, in vitro strengthening of the epithelial barrier, in vitro stimulation of cytokines produced by regulatory T cells, in addition to assessing fundamental quality criteria (stability, gastrointestinal (GI)-survival, multispecies concept, allergen-free). Ecologic®Tolerance/Syngut™ was subsequently developed consisting of a multispecies concept using 4 different probiotic strains (Bifidobacterium lactis W51, Lactobacillus acidophilus W22, Lactobacillus plantarum W21 and Lactococcus lactis W19). Each of these strains demonstrated ability to survive the GI-tract and strain specific effects in producing β-galactosidase, strengthening the gut barrier function after immunological-induced stress and inhibiting Th2 cytokines (IL-4, IL-5 and IL-13 (≥50%), in addition to stimulating interleukin-10 levels; thus, providing in vitro evidence for the efficacy of the selected strains to provide beneficial effects in patients suffering from food intolerance.


Author(s):  
Lidia Stasiak-Różańska ◽  
Anna Berthold-Pluta ◽  
Antoni Stanisław Pluta ◽  
Krzysztof Dasiewicz ◽  
Monika Garbowska

Probiotics are recommended, among others, in the diet of children who are under antibiotic therapy, or that suffer from food allergies or travel diarrhea, etc. In the case of toddlers taking probiotic preparations, it is highly recommended to first remove the special capsule, which normally protects probiotic strains against hard conditions in the gastrointestinal tract. Otherwise, the toddler may choke. This removal can impair probiotic survival and reduce its efficacy in a toddler’s organism. The aim of this study was to evaluate the survivability of five strains of lactic acid bacteria from the commercial probiotics available on the Polish market under simulated conditions of the gastrointestinal tract. Five probiotics (each including one of these strains: Bifidobacterium BB-12, Lactobacillus (Lb.) rhamnosus GG, Lb. casei, Lb. acidophilus, Lb. plantarum) were protective capsule deprived, added in a food matrix (chicken–vegetable soup) and subjected under simulated conditions of the gastric and gastrointestinal passage. Strain survivability and possibility to growth were evaluated. Obtained results showed that, among all analyzed commercial probiotic strains, the Lb. plantarum was the most resistant to the applied conditions of the culture medium. They showed a noticeable growth under both in vitro gastric conditions at pH 4.0 and 5.0, as well as in vitro intestinal conditions at all tested concentrations of bile salts.


Sign in / Sign up

Export Citation Format

Share Document