scholarly journals Evidence for the importance of land use, site characteristics and vegetation composition for rooting in European Alps

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erich Tasser ◽  
Sonja Gamper ◽  
Janette Walde ◽  
Nikolaus Obojes ◽  
Ulrike Tappeiner

AbstractPlant rooting strongly affects most hydrological, biogeochemical and ecological processes in terrestrial ecosystems, as it presents the main pathway for carbon, water and nutrient transfer from soil to the atmosphere and is a key factor in stabilizing the soil layer. Few studies have actually investigated the link between phytosociological and structural vegetation composition and diversity in soil rooting parameters. Our study provides a comprehensive evaluation of plant cover and diversity effects on rooting parameters dependent on different land-use types along a north–south transect in the Eastern Alps. We conducted field studies of root biomass, rooting density and rooting depth for the six main land-use types: intensively and lightly used hay meadows, pastures, arable land, agriculturally unused grasslands and forests. The variation in rooting parameters was explained by different aspects of species and functional richness, species and functional composition, functional traits, abundance of key species and site variables depending on the land-use types. Our results showed that different characteristics of biodiversity explained the variance in root parameters (mass, density and depth) to a high degree (determination coefficient R2 values varied between 0.621 and 0.891). All rooting parameters increased with increasing plant species richness, as well as with a higher diversity of plant functional traits. The inclusion of site parameters significantly increased the explained variance, while we could not find evidence for key species and their abundance to provide additional explanatory power. Allowing the effects to vary depending on land-use types turned out to be a necessity supporting the importance of considering land-use types for rooting. The findings indicate that vegetation composition has a clear relationship with rooting parameters across different habitats in the European Alps. As the effect of plant composition differs with respect to the land-use type, rooting can be monitored by land management to achieve the desired benefits. For example, intensified rooting through extensive management decreases erosion risk and increases carbon uptake.

2019 ◽  
Vol 47 (7) ◽  
pp. 1219-1236 ◽  
Author(s):  
Ha Na Im ◽  
Chang Gyu Choi

This study proposes an alternative to the conventional entropy-based land use mix index, which is generally used to measure the diversity of land use. Pedestrian volume was selected as the dependent variable as it represents the vitality of districts, which many recent urban studies now consider important. The study investigates an entropy-based weighted land use mix index, which is weighted by different land use types. For the index, different areas are needed to generate a unit of pedestrian volume, whose measure is m2/person/day. The study demonstrates that this alternative is more effective than the existing conventionally used entropy-based land use mix index for explaining pedestrian volume. The research confirms that the conventionally used entropy-based land use mix index can have a positive or negative impact depending on the land use characteristics of the survey points because the conventionally used entropy-based land use mix index has a non-linear relationship with pedestrian volume. By analysing 9727 surveyed locations of pedestrian volume in Seoul, Korea, the study demonstrates that the weighted land use mix index, rather than the conventionally used entropy-based land use mix index, can improve the explanatory power of the estimation model for the relationship between pedestrian volume and built environments, showing consistent results throughout the empirical analysis. In future built-environment studies, the utility of the weighted land use mix index is expected to improve if studies include how to find the accurate weighting of the land use in estimating the pedestrian volume.


2016 ◽  
Vol 13 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Maria Stergiadi ◽  
Marcel van der Perk ◽  
Ton C. M. de Nijs ◽  
Marc F. P. Bierkens

Abstract. Climate change and land management practices are projected to significantly affect soil organic carbon (SOC) dynamics and dissolved organic carbon (DOC) leaching from soils. In this modelling study, we adopted the Century model to simulate past (1906–2012), present, and future (2013–2100) SOC and DOC levels for sandy and loamy soils typical of northwestern European conditions under three land use types (forest, grassland, and arable land) and several future scenarios addressing climate change and land management change. To our knowledge, this is the first time that the Century model has been applied to assess the effects of climate change and land management on DOC concentrations and leaching rates, which, in combination with SOC, play a major role in metal transport through soil. The simulated current SOC levels were generally in line with the observed values for the different kinds of soil and land use types. The climate change scenarios result in a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC is projected to slightly increase and DOC to decrease. An analysis of the sole effects of changes in temperature and changes in precipitation showed that, for SOC, the temperature effect predominates over the precipitation effect, whereas for DOC the precipitation effect is more prominent. A reduction in the application rates of fertilisers under the land management scenario leads to a decrease in the SOC stocks and the DOC leaching rates for the arable land systems, but it has a negligible effect on SOC and DOC levels for the grassland systems. Our study demonstrated the ability of the Century model to simulate climate change and agricultural management effects on SOC dynamics and DOC leaching, providing a robust tool for the assessment of carbon sequestration and the implications for contaminant transport in soils.


2021 ◽  
Author(s):  
Chaogui Lei ◽  
Paul Wagner ◽  
Nicola Fohrer

<p>Understanding the impacts of land use changes (LUCC) on the dynamics of water quantity and quality is necessary to identify suitable mitigation measures that are needed for sustainable watershed management. Lowland catchments are characterized by a strong interaction of streamflow and near-surface groundwater that intensifies the risk of nutrient pollution. In this study, a hydrologic model (Soil and Water Assessment Tool, SWAT) and partial least squares regression (PLSR) were used to quantify the impacts of different land use types on the variations in actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), and water yield (WYLD) as well as on sediment (SED), total phosphorus (TP), and total nitrogen (TN). To this end, the model was calibrated and validated with daily streamflow data (30 years) and daily sediment and nutrient data from measurement campaigns (3 years in total). Three model runs over thirty years were performed using the different land use maps of 1987, 2010, and 2019, respectively. Land use changes between those years were used to explain the modelled changes in water quantity and quality on the subbasin scale applying PLSR. SWAT achieved a good performance for streamflow (calibration: NSE=0.8, PBIAS=5.5%; validation: NSE=0.78, PBIAS=5.1%) and for TN (calibration: NSE=0.65, PBIAS= -11.3%; validation: NSE=0.87, PBIAS=2.7%) and an acceptable performance for sediment and TP (calibration: NSE=0.49-0.53, PBIAS=25.8% -29.7%; validation: 0.51-0.7, PBIAS= -23.9% - -8.7%) in Stör catchment. The variations in ET, SQ, BF, WYLD, SED, TP, and TN could be explained to an extent of 67%-88% by changes in the area, shape, dominance, and aggregation of individual land use types. They were largely correlated with the major LUCC in the study area i.e. a decrease of arable land, and a respective increase of pasture and settlement. The change in the percentage of arable land affected the dynamics of SED, TP, TN and BF, indicated by a Variable Influence on Projection (VIP) > 1.2 and largest absolute regression coefficients (RCs: 0.45-0.72 for SED, TP, TN; -0.84 for BF). The change in pasture area affected ET, SED, TP, and TN, as indicated by VIPs >1.  The change in settlement percentage had VIP up to 1.62 for SQ and was positively and significantly influenced it (RC: 1.28). PLSR helped to identify the key contributions from individual land use changes on water quantity and quality dynamics. These provide a quantitative basis for targeting most influential land use changes to mitigate impacts on water quality in the future.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Bonggeun Song ◽  
Kyunghun Park

The aim was to identify microclimate characteristics in relation to ground cover in green areas and the reflectivity of building coating materials. Furthermore, microclimate modeling of temperatures was conducted using ENVI-met, to analyze the effects of improved thermal environments based on increased green areas and increased reflectivity of exterior coatings. The accuracy of ENVI-met was validated through comparisons with field temperature measurements. The RMSE deviation of the predicted and actual field temperature values was 3–6°C; however, the explanatory power was as high as 60%. ENVI-met was performed for commercial and single residential areas that have high densities of artificial cover materials, before and after changes related to development of green areas and to increase in the reflectivity of coating materials. The results indicated that both areas exhibited distinct temperature reductions due to the creation of green spaces. When the reflectivity of the coating material was increased, a temperature increase was observed in all land-use types. Therefore, in order to improve the thermal environment of complex urban areas, it is necessary to improve green-area development and to use high-reflectivity ground and building cover materials, while taking into account the spatial characteristics of land-use types and their surrounding areas.


2021 ◽  
Author(s):  
Sarah Redlich ◽  
Jie Zhang ◽  
Caryl Benjamin ◽  
Maninder Singh Dhillon ◽  
Jana Englmeier ◽  
...  

SummaryClimate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients.Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximizes the potential range and independence of environmental variables at different spatial scales.Stratifying the state of Bavaria into five climate zones and three prevailing land-use types, i.e. near-natural, agriculture and urban, resulted in 60 study regions covering a mean annual temperature gradient of 5.6–9.8 °C and a spatial extent of 380×360 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, i.e. forests, grasslands, arable land or settlement (local climate gradient 4.5–10 °C). This approach achieved low correlations between climate and land-use (proportional cover) at the regional and landscape scale with |r ≤0.33| and |r ≤0.29|, respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements.The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.


Author(s):  
Tsedekech Gebremeskel Weldmichael ◽  
Erika Michéli ◽  
Barbara Simon

Land use change may modify key soil attributes, influencing the capacity of soil to maintain ecological functions. Understanding the effects of land use types (LUTs) on soil properties is, therefore, crucial for the sustainable utilization of soil resources. This study aims to investigate the impact of LUT on primary soil properties. Composite soil samples from eight sampling points per LUT (forest, grassland, and arable land) were taken from the top 25 cm of the soil in October 2019. The following soil physicochemical parameters were investigated according to standard protocols: soil organic matter (SOM), pH, soil moisture, NH4+–N, NO3––N, AL-K2O, AL-P2O5, CaCO3, E4/E6, cation exchange capacity (CEC), base saturation (BS), and exchangeable bases (Ca2+, Mg2+, K+, and Na+). Furthermore, soil microbial respiration (SMR) was determined based on basal respiration method. The results indicated that most of the investigated soil properties showed significant difference across LUTs, among which NO3––N, total N, and K2O were profoundly affected by LUT (p ≤ 0.001). On the other hand, CEC, soil moisture, and Na+ did not greatly change among the LUTs (p ≥ 0.05). Arable soils showed the lowest SOM content and available nitrogen but the highest content of P2O5 and CaCO3. SMR was considerably higher in grassland compared to arable land and forest, respectively. The study found a positive correlation between soil moisture (r = 0.67; p < 0.01), Mg2+ (r = 0.61; p < 0.01), and K2O (r = 0.58; p < 0.05) with SMR. Overall, the study highlighted that agricultural practices in the study area induced SOM and available nitrogen reduction. Grassland soils were more favorable for microbial activity.


2019 ◽  
Vol 10 (2) ◽  
pp. 32-37
Author(s):  
Farida Begum ◽  
Muneer Alam ◽  
Sameena Mumtaz ◽  
Manzoor Ali ◽  
Seema Wafee ◽  
...  

Soil quality is a fundamental component of environmental quality and impact of land use is also a keydetrimental factor in today’s rapid urbanization era. The study aims to evaluate the effects of different land-use type on selected soil quality indicators. Sixty soil samples were collected from various land use types, i.e, pasture, forest and agriculture from a depth of 0-15cm. Analysis of variance (ANOVA) showed that the land use type significantly affected the soil’s physical and chemical properties. The moisture content was significantly higher (p<0.001) in the pasture (41.7%) than the forest (26.2%) and lowest in agricultural land (14.4%). The soil pH was significantly higher or slightly alkaline for agriculture (7.8), while for pasture (6.5) and forest (6.1), it was found to be slightly acidic. Electric conductivity (EC) and bulk density (BD) did not vary significantly with land use type, but the EC followed the decreasing order: forest (203.7μS/cm) < pasture (235μS/cm) < agriculture (328.7μS/cm). The soil organic matter (SOM) and soil organic carbon (SOC) significantly (p<0.05) differed with land use type and found in the order: forest (3.0%, 1.3 %) > pasture land (2.9%, 1.2%) > arable land (2.5%, 1.1%). NO3-N, available P and exchangeable K did not vary significantly across land use types. However, mean values were higher for agriculture (10.2mg/kg, 4.5mg/kg, 66mg/kg) than forest (10mg/kg,3.5mg/kg, 60mg/kg) and pasture (9.8mg/kg, 4.3, 60.2mg/kg). Alpine soils are good ecological indicators because of vulnerability to environmental change, therefore, regular monitoring of soil properties along with carbon stocks is essential to maintain soil health, enhance agricultural productivity and sustain agroecosystems.


2018 ◽  
Vol 11 (1) ◽  
pp. 19-34
Author(s):  
Karel Poprach ◽  
Libor Opluštil ◽  
František Krause ◽  
Ivo Machar

Abstract The Little Owl is currently endangered bird species of agricultural lowland areas in Central Europe. Nesting sites of the Little Owl are often old trees as well as buildings and quarries with suitable nesting cavities. The Little Owl has severely declined in a major part of Europe during the past decades. Information on habitat requirements of the Little Owl and data related to land-use changes at nest sites (covering both the breeding and foraging habitats) are needed for conservation programmes aimed at this bird species. Land-use changes in farmland rank among frequently discussed negative factors causing the population decline of the Little Owl. The aim of this study is to analyse land-use changes at nest sites of the Little Owl in the South-Moravian region (Czech Republic) between the years 1976/1977 and 2014. In both studied periods (1976/1977 and 2014), the most important land-use type within 500 m from the nest sites of the Little Owl was arable land (66.94 % – 62.25 %), followed by built-up areas (19.97 % –22.41 %), while the other land-use types made up less than 5 %. The proportion of the particular land-use type did not change significantly between the years 1976/1977 and 2014. The most important change in comparison with the period 1976/1977 was the decrease in the area of arable land by 4.69 % and that of orchards and gardens by 1.99 %, while the surface of built-up areas increased slightly by 2.45 % and that of meadows and pastures by 1.5 %. The analysis shows that at the known nest sites of the Little Owl in the South-Moravian region (Czech Republic), there were no significant changes in the proportion of the particular land-use types within 500 m from the nests between the years 1976/1977 and 2014. Based on these results, we can conclude that in comparison with the availability of nest sites, which seems to be the important limiting factor for the occurrence and population density of the Little Owl, land-use changes in study area were not very important factor influencing decline of the Little Owl.


Land ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 197 ◽  
Author(s):  
Jozef Vilček ◽  
Štefan Koco ◽  
Eva Litavcová ◽  
Stanislav Torma

In this paper we point out the basic soil parameters characterizing current arable land, permanent grassland, vineyards, and orchards in Slovakia. While the area of permanent land use types is more or less stable, there is a noticeable decrease in the area of arable land. In Slovakia, arable land is located mainly on the plain. The value of its production potential is 67 points (the highest quality soil has 100 points). Permanent grassland is found at higher altitudes on slopes, with a higher gravel content, and the value of their production potential is 35 points. Vineyards are predominantly located in the warm regions of southern Slovakia on the middle slopes. These soils are generally loamy, without significant gravel content, and the value of their production potential is 59 points. Most orchards are located on the plains. The soils are predominantly loamy and deep, without significant gravel content, and the value of their production potential is 63 points. Characteristics of agricultural land use types were determined using vector databases of soil parameters obtained from Soil Science and Conservation Research Institute information systems and a current vector layer for identification of agriculturally used soils, the Land Parcel Identification System, using geographic information systems. Moreover, our analysis tries to determine what developments can be expected in the use of four agricultural land use types. The modeling assumptions concern the future performance of these variables using exponential smoothing and Box–Jenkins methodology.


2011 ◽  
Vol 356-360 ◽  
pp. 881-885
Author(s):  
Qi Zhang ◽  
Li Ming Jin ◽  
Xiang Hu Li ◽  
Heng Peng Li ◽  
Min Shao

Nitrogen and phosphorous pollution is common in China and worldwide. The pollution deteriorates water quality and even causes significant change of the freshwater ecosystem. Management must be strengthened in order to reduce the pollution to secure water supply safety and to maintain healthy ecosystems. This paper investigated the yield of total nitrogen (TN) for different land use types, exemplified in the Xitiaoxi catchment of Lake Taihu basin, where catchment-generated nitrogen pollution is severe. Extensive water quality sampling was performed for different river levels and various land use types. A distributed hydrological model was also employed to simulate the river discharges at locations where flow observation is not available, and the simulated river discharges were used for the calculation of nitrogen yield. It is found that generally the catchment’s nitrogen export is still as high as 2.6 t/km2/year. The yield for forest is 0.8-1.0 t/km2/year, while the yields for arable land and for the river sections immediately downstream of urban area are higher than the average ranging 2.8-3.3 t/km2/year. It is also concluded that the hydrological modelling using a spatially distributed model is helpful and essential in obtaining flows at any locations, which can subsequently be used jointly with the water quality data to identify the critical source areas with high nitrogen yields.


Sign in / Sign up

Export Citation Format

Share Document