scholarly journals Penetration of sweet cherry skin by 45Ca-salts: pathways and factors

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Winkler ◽  
Moritz Knoche

AbstractCalcium is beneficial to sweet cherry physiology. The objective was to investigate factors affecting uptake of Ca into mature sweet cherry fruit through their skins. Penetration of 45Ca-salts was monitored using whole fruit or excised fruit skins mounted in diffusion cells. Penetration of 45CaCl2 into intact fruit and through excised skins increased with time. Sealing the pedicel/fruit junction decreased penetration, but sealing the stylar scar had no effect. There was little difference in permeances of the fruit skin to 45CaCl2, 45Ca(NO3)2, 45Ca-formate, 45Ca-acetate, 45Ca-lactate or 45Ca-propionate. Only 45Ca-heptagluconate penetrated at a slower rate. Increasing temperature markedly increased Ca-penetration. Penetration was most rapid at 35 °C, intermediate at 22 °C and slowest at 12 °C. Increasing relative humidity (RH) from 0, 28, 75 to 100% increased penetration of 45CaCl2, but penetration of 45Ca-formate was restricted to 100% RH. Increasing the RH from 50 to 100% at 96 h after droplet application had no effect on penetration of 45CaCl2, but increased penetration of 45Ca-formate. The results reveal that: (1) the fruit/pedicel junction is a site of preferential Ca-uptake and (2) Ca-penetration is limited by the mobility of the Ca ion in the dried-down droplet residue when the point of deliquescence of the applied salt exceeds the ambient RH.

2016 ◽  
Vol 141 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Martin Brüggenwirth ◽  
Moritz Knoche

The skins of all fruit types are subject to sustained biaxial strain during the entire period of their growth. In sweet cherry (Prunus avium L.), failure of the skin greatly affects fruit quality. Mechanical properties were determined using a biaxial bulging test. The factors considered were the following: ripening, fruit water relations (including turgor, transpiration, and water uptake), and temperature. Excised discs of fruit skin were mounted in a custom elastometer and pressurized from their anatomically inner surfaces. This caused the skin disc to bulge outwards, stretching it biaxially, and increasing its surface area. Pressure (p) and biaxial strain (ε) due to bulging were quantified and the modulus of elasticity [E (synonyms elastic modulus, Young’s modulus)] was calculated. In a typical test, ε increased linearly with p until the skin fractured at pfracture and εfracture. Stiffness of the skin decreased in ripening late stage III fruit as indicated by a decrease in E. The value of pfracture also decreased, whereas that of εfracture remained about constant. Destroying cell turgor decreased E and pfracture relative to the turgescent control. The E value also decreased with increasing transpiration, while pfracture and (especially) εfracture increased. Water uptake had little effect on E, whereas εfracture and pfracture decreased slightly. Increasing temperature decreased E and pfracture, but had no effect on εfracture. Only the instantaneous elastic strain and the creep strain increased significantly at the highest temperatures. A decrease in E indicates decreasing skin stiffness that is probably the result of enzymatic softening of the cell walls of the skin in the ripening fruit, of relaxation of the cell walls on eliminating or decreasing turgor by transpiration and, possibly, of a decreasing viscosity of the pectin middle lamellae at higher temperatures. The effects are consistent with the conclusion that the epidermal and hypodermal cell layers represent the structural “backbone” of the sweet cherry fruit skin.


1989 ◽  
Vol 67 (3) ◽  
pp. 928-932 ◽  
Author(s):  
Kan-Fa Chang ◽  
P. V. Blenis

The effects of temperature and relative humidity (RH) on the survival of Endocronartium harknessii teliospores and the longevity of these spores out of doors during daylight hours were studied. In one experiment, fresh and liquid-nitrogen-stored spores of E. harknessii were impacted onto spider webs or plastic threads and incubated in darkness at temperatures of 6, 15, and 24 °C and RHs of 39 and 98%. Survival was measured after 1, 2, 4, 8, and 16 days. Spore longevity decreased with increasing temperature and was lower at 98 than at 39% RH. In a second experiment, spores were impacted onto spider webs and placed out of doors on clear days. Viability decreased linearly with time and averaged 33% after 12 h. The data suggest that E. harknessii has relatively good ability to survive in an airborne state and thus would have considerable potential for long distance spread.


2021 ◽  
pp. 71-72
Author(s):  
Adamu, B. ◽  
Abdullahi, S. ◽  
Saidu, S. G ◽  
Yustus Sunday Francis

The term 'Hydroponics' was derived from Greek words 'hydro' means water and 'ponics' means labor. Hydroponic is a modern agricultural technique that uses nutrient solution rather than soil solution for fodder production. As population increases the food demand also increased, the existing system of agriculture will not be able to meet the food requirement in the near future due to environmental challenges in the industry. The major environmental factors affecting the hydroponics production system are; Temperature, relative humidity, and light. The objectives of this studies are to examine the hydroponics greenhouse technologies, impact of environmental factors on hydroponics greenhouse cultivation and challenges of growing on hydroponics greenhouse system. This study revealed that hydroponics greenhouse cultivation is a better option for improved fodder production, water utilization, palatability and digestibility.


2020 ◽  
Vol 89 (1) ◽  
Author(s):  
Santi Saraphol ◽  
Srunya Vajrodaya ◽  
Ekaphan Kraichak ◽  
Anchalee Sirikhachornkit ◽  
Nuttha Sanevas

This study addressed the environmental factors that affect <em>Trentepohlia</em> spp. in the Chiang Dao Wildlife Sanctuary at altitudes of 399 to 1,503 meters above sea level (m a.s.l.) during the rainy, winter, and summer seasons. Species were identified using characteristic morphological identification. The influence of environmental factors on the algae was analyzed using a statistical program, and seasonal changes in the quantity of photosynthetic pigments in the dominant species were evaluated. The average relative humidity was 69.34 ± 12.90%, the average temperature was 26.23 ± 3.79 °C, and the average light intensity was 139.78 ± 42.21 µmol photon m<sup data-id="superscript-1">−2</sup> s<sup data-id="superscript-2">−1</sup>. Thirteen species were found: <em>Trentepohlia chapmanii</em>, <em>Trentepohlia</em> sp. 1, <em>Trentepohlia</em> sp. 2, <em>Trentepohlia sundarbanensis</em>, <em>Trentepohlia</em> sp. 3, <em>Trentepohlia rigidula</em>, <em>Trentepohlia</em> sp. 4, <em>Trentepohlia effusa</em>, <em>Trentepohlia monilia</em>, <em>Trentepohlia abietina</em>, <em>Trentepohlia</em> sp. 5, <em>Trentepohlia aurea</em>, and <em>Trentepohlia umbrina</em>. The largest number of species (seven to nine) were found at lower altitudes, from 473 to 517 m a.s.l. Species diversity was greatest in the winter season (13 species). Species found at low attitude were grouped together (Group 1) and had the greatest diversity, and the remaining species were divided into Groups 2, 3, and 4. Environmental factors had both positive and negative influences on the species, especially <em>T. chapmanii</em>, which was found below 1,003 m a.s.l., and <em>T. monilia</em>, which was found in areas with a high relative humidity of 74.50% to 83.93%. The ratio of the total carotenoids to chlorophyll of <em>T. rigidula</em>, the dominant species, was relatively high at 4.96:1, and the β-carotene content (46.89 %w/w) was highest during winter.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Jing Du ◽  
Yingxue Lin ◽  
Yuan Gao ◽  
Yanyan Tian ◽  
Jixiang Zhang ◽  
...  

Processed unhusked rice is prone to mildew during storage. In this study, the storage conditions were simulated at temperatures of 20, 30, and 35 °C and a relative humidity of 40%, 60% and 80%, respectively. The water, fatty acid, and total starch content and the peak viscosity, mold colony number, protein secondary structure, and spatial structure of rice were monitored in order to propose the critical point of mildew during storage. In the process of rice from lively to moldy, the water content, fatty acid contents and the peak viscosity were increased. The total starch content decreased and then showed a slow increasing trend, while the microstructure of the powder particles changed from smooth and complete to loosen and hollow. With the increase in storage time, the vibration of the amide Ⅰ band of the rice samples decreased slightly, indicating that the total contents of β-fold, β-turn, α-helix, and random curl of the rice protein also changed. PCA (Principal Component Analysis) analysis showed that rice mildew index was closely related to temperature and humidity during storage. In our investigation, the best and most suitable temperature and relative humidity for rice storge is 20 °C and 40%, respectively. These results suggested that temperature and environmental humidity are vital factors affecting the physicochemical properties and nutrient changes, which provides a theoretical basis for the early warning of rice mildew during storage.


2008 ◽  
Vol 6 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Predrag Kolarz ◽  
Dusan Filipovic

Diurnal atmospheric air-ion concentrations have been investigated at a site where synchronous aerosol, ozone, temperature and relative humidity measurements were also made. Air-ions, temperature and relative humidity were measured with Gerdien type Cylindrical Detector of Air-Ions (CDI-06) made in the Institute of Physics, Belgrade. Ozone and aerosols were measured with commercial instruments owned by the Institute of Public Health, Belgrade. Typical daily variations of the measured parameters were analyzed and showed that air-ions of both signs and ozone are positively correlated, while aerosols show strong inverse correlation with air-ions. Also, concentrations of air-ions and ozone are decreasing with temperature while aerosol concentration and humidity are increasing. These processes could be explained concerning properties of the specified parameters, measuring place properties and weather conditions.


1994 ◽  
Vol 74 (3) ◽  
pp. 551-554 ◽  
Author(s):  
Shaukat Ali ◽  
L. A. Goonewardene ◽  
J. A. Basarab

Water consumption (WC) by 39.5 animal units (AU) of grazing cattle was studied at a central Alberta site in summer. Average WC AU−1 was estimated at 48.9 L d−1. WC increased by 0.68 L AU−1 (P < 0.01) for each percentage decrease in relative humidity, increased by 0.81 L AU−1 (P < 0.02) for each degree Celsius increase in maximum daily temperature, and increased by 0.15 L AU−1 (P < 0.06) as cattle grew and the season progressed. Relative humidity is shown to be an important determinant of WC in grazing cattle. Key words: Water consumption, animal unit, temperature, humidity, grazing cattle


1996 ◽  
Vol 86 (1B) ◽  
pp. S193-S208 ◽  
Author(s):  
Paul Spudich ◽  
Margaret Hellweg ◽  
W. H. K. Lee

Abstract The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78°E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station C00 was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of C00. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20° away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph were amplified by a factor of about 2 or less compared with sites at the base of the hill. Probable variations in surficial shear-wave velocity do not account for the observed differences among mainshock acceleration observed at Tarzana and at two different sites within 2 km of Tarzana.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Ye Tian ◽  
Gui-Peng Yang ◽  
Chun-Ying Liu ◽  
Pei-Feng Li ◽  
Hong-Tao Chen ◽  
...  

Abstract. Nitric oxide (NO) is a short-lived intermediate of the oceanic nitrogen cycle. However, our knowledge about its production and consumption pathways in oceanic environments is rudimentary. In order to decipher the major factors affecting NO photochemical production, we irradiated several artificial seawater samples as well as 31 natural surface seawater samples in laboratory experiments. The seawater samples were collected during a cruise to the western tropical North Pacific Ocean (WTNP, a N–S section from 36 to 2∘ N along 146 to 143∘ E with 6 and 12 stations, respectively, and a W–E section from 137 to 161∘ E along the Equator with 13 stations) from November 2015 to January 2016. NO photoproduction rates from dissolved nitrite in artificial seawater showed increasing trends with decreasing pH, increasing temperature, and increasing salinity. In contrast, NO photoproduction rates (average: 0.5±0.2×10-12 mol L−1 s−1) in the natural seawater samples from the WTNP did not show any correlations with pH, water temperature, salinity, or dissolved inorganic nitrite concentrations. The flux induced by NO photoproduction in the WTNP (average: 13×10-12 mol m−2 s−1) was significantly larger than the NO air–sea flux density (average: 1.8×10-12 mol m−2 s−1), indicating a further NO loss process in the surface layer.


Author(s):  
Yi Li ◽  
Canjun Zheng

Although visceral leishmaniasis disease is controlled overall in China, it remains a serious public health problem and remains fundamentally uncontrolled in Jiashi County, Xinjiang Uygur Autonomous Region. During 2005–2015, there were two outbreaks in Jiashi County. Assessing the influence of meteorological factors on visceral leishmaniasis incidence is essential for its monitoring and control. In this study, we applied generalized estimating equations to assess the impact of meteorological factors on visceral leishmaniasis risk from 2005 to 2015. We also compared meteorological factors among years with Kruskal–Wallis test to explore possible reasons behind the two outbreaks that occurred during our study period. We found that temperature and relative humidity had very significant associations with visceral leishmaniasis risk and there were interactions between these factors. Increasing temperature or decreasing relative humidity could increase the risk of visceral leishmaniasis events. The outbreaks investigated might have been related to low relative humidity and high temperatures. Our findings will support the rationale for visceral leishmaniasis control in China.


Sign in / Sign up

Export Citation Format

Share Document