scholarly journals High-resolution transcriptional landscape of xeno-free human induced pluripotent stem cell-derived cerebellar organoids

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel Nayler ◽  
Devika Agarwal ◽  
Fabiola Curion ◽  
Rory Bowden ◽  
Esther B. E. Becker

AbstractCurrent protocols for producing cerebellar neurons from human pluripotent stem cells (hPSCs) often rely on animal co-culture and mostly exist as monolayers, limiting their capability to recapitulate the complex processes in the developing cerebellum. Here, we employed a robust method, without the need for mouse co-culture to generate three-dimensional cerebellar organoids from hPSCs that display hallmarks of in vivo cerebellar development. Single-cell profiling followed by comparison to human and mouse cerebellar atlases revealed the presence and maturity of transcriptionally distinct populations encompassing major cerebellar cell types. Encapsulation with Matrigel aimed to provide more physiologically-relevant conditions through recapitulation of basement-membrane signalling, influenced both growth dynamics and cellular composition of the organoids, altering developmentally relevant gene expression programmes. We identified enrichment of cerebellar disease genes in distinct cell populations in the hPSC-derived cerebellar organoids. These findings ascertain xeno-free human cerebellar organoids as a unique model to gain insight into cerebellar development and its associated disorders.

2020 ◽  
Author(s):  
Samuel Nayler ◽  
Devika Agarwal ◽  
Fabiola Curion ◽  
Rory Bowden ◽  
Esther B.E. Becker

ABSTRACTCurrent protocols for producing cerebellar neurons from human pluripotent stem cells (hPSCs) are reliant on animal co-culture and mostly exist as monolayers, which have limited capability to recapitulate the complex arrangement of the brain. We developed a method to differentiate hPSCs into cerebellar organoids that display hallmarks of in vivo cerebellar development. Single-cell profiling followed by comparison to an atlas of the developing murine cerebellum revealed transcriptionally-discrete populations encompassing all major cerebellar cell types. Matrigel encapsulation altered organoid growth dynamics, resulting in differential regulation of cell cycle, migration and cell-death pathways. However, this was at the expense of reproducibility. Furthermore, we showed the contribution of basement membrane signalling to both cellular composition of the organoids and developmentally-relevant gene expression programmes. This model system has exciting implications for studying cerebellar development and disease most notably by providing xeno-free conditions, representing a more biologically relevant and therapeutically tractable culture setting.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0245571
Author(s):  
Junya Yokoyama ◽  
Shigeru Miyagawa ◽  
Takami Akagi ◽  
Mitsuru Akashi ◽  
Yoshiki Sawa

The extracellular matrix (ECM) plays a key role in the viability and survival of implanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We hypothesized that coating of three-dimensional (3D) cardiac tissue-derived hiPSC-CMs with the ECM protein fibronectin (FN) would improve the survival of transplanted cells in the heart and improve heart function in a rat model of ischemic heart failure. To test this hypothesis, we first explored the tolerance of FN-coated hiPSC-CMs to hypoxia in an in vitro study. For in vivo assessments, we constructed 3D-hiPSC cardiac tissues (3D-hiPSC-CTs) using a layer-by-layer technique, and then the cells were implanted in the hearts of a myocardial infarction rat model (3D-hiPSC-CTs, n = 10; sham surgery control group (without implant), n = 10). Heart function and histology were analyzed 4 weeks after transplantation. In the in vitro assessment, cell viability and lactate dehydrogenase assays showed that FN-coated hiPSC-CMs had improved tolerance to hypoxia compared with the control cells. In vivo, the left ventricular ejection fraction of hearts implanted with 3D-hiPSC-CT was significantly better than that of the sham control hearts. Histological analysis showed clear expression of collagen type IV and plasma membrane markers such as desmin and dystrophin in vivo after implantation of 3D-hiPSC-CT, which were not detected in 3D-hiPSC-CMs in vitro. Overall, these results indicated that FN-coated 3D-hiPSC-CT could improve distressed heart function in a rat myocardial infarction model with a well-expressed cytoskeletal or basement membrane matrix. Therefore, FN-coated 3D-hiPSC-CT may serve as a promising replacement for heart transplantation and left ventricular assist devices and has the potential to improve survivability and therapeutic efficacy in cases of ischemic heart disease.


2020 ◽  
Vol 22 (1) ◽  
pp. 288
Author(s):  
Michael J. Workman ◽  
Elissa Troisi ◽  
Stephan R. Targan ◽  
Clive N. Svendsen ◽  
Robert J. Barrett

Human intestinal organoids (HIOs) are increasingly being used to model intestinal responses to various stimuli, yet few studies have confirmed the fidelity of this modeling system. Given that the interferon-gamma (IFN-γ) response has been well characterized in various other cell types, our goal was to characterize the response to IFN-γ in HIOs derived from induced pluripotent stem cells (iPSCs). To achieve this, iPSCs were directed to form HIOs and subsequently treated with IFN-γ. Our results demonstrate that IFN-γ phosphorylates STAT1 but has little effect on the expression or localization of tight and adherens junction proteins in HIOs. However, transcriptomic profiling by microarray revealed numerous upregulated genes such as IDO1, GBP1, CXCL9, CXCL10 and CXCL11, which have previously been shown to be upregulated in other cell types in response to IFN-γ. Notably, “Response to Interferon Gamma” was determined to be one of the most significantly upregulated gene sets in IFN-γ-treated HIOs using gene set enrichment analysis. Interestingly, similar genes and pathways were upregulated in publicly available datasets contrasting the gene expression of in vivo biopsy tissue from patients with IBD against healthy controls. These data confirm that the iPSC-derived HIO modeling system represents an appropriate platform to evaluate the effects of various stimuli and specific environmental factors responsible for the alterations in the intestinal epithelium seen in various gastrointestinal conditions such as inflammatory bowel disease.


Author(s):  
Sanchez TC ◽  
◽  
Diaz CG ◽  
George T ◽  
Eaton V ◽  
...  

Tendinopathy encompasses one of the most common and debilitating group of injuries in persons of all age. Current treatments range from rest and ice to more invasive mechanisms such as surgical repair or artificial tendon recreation. In recent years, there has been a push to study minimally invasive treatments to aid in the regeneration and repair of damaged tendons. These treatments are yet to show reproducible clinically significant improvement over placebo treatments. Years of research has been put into synthesizing different materials to create scaffolds including metals, bioactive glasses, natural and synthetic polymers. These scaffolds are constructed through one of a variety or complex processes from 3D printing to solvent leaching. These different mechanisms of creation and materials used allow the scaffolds to embody different properties including pore size, thermal stability, strength and pliability. This allows for the utilization of tissue engineering in a multitude of in vivo environments. Many different cell types are used to seed scaffolds including tenocytes, multipotent stem cells and induced pluripotent stem cells. Scaffolds show promise as a delivery system for drugs as well as cytokines and growth factors. Tissue engineering is a novel field of study that shows promise not only for tendon repair but the field of orthopedics as a whole. This paper focuses on systematic review of the principles of tissue engineering and the implications in tendinopathy.


2021 ◽  
Author(s):  
Junya Yokoyama ◽  
Shigeru Miyagawa ◽  
Takami Akagi ◽  
Mitsuru Akashi ◽  
Yoshiki Sawa

AbstractThe extracellular matrix (ECM) plays a key role in the viability and survival of implanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We hypothesized that coating of three-dimensional (3D) cardiac tissue-derived hiPSC-CMs with the ECM protein fibronectin (FN) would improve the survival of transplanted cells in the heart and improve heart function in a rat model of ischemic heart failure. To test this hypothesis, we first explored the tolerance of FN-coated hiPSC-CMs to hypoxia in an in vitro study. For in vivo assessments, we constructed 3D-hiPSC cardiac tissues (3D-hiPSC-CTs) using a layer-by-layer technique, and then the cells were implanted in the hearts of a myocardial infarction rat model (3D-hiPSC-CTs, n = 10; sham surgery control group (without implant), n = 10). Heart function and histology were analyzed 4 weeks after transplantation. In the in vitro assessment, cell viability and lactate dehydrogenase assays showed that FN-coated hiPSC-CMs had improved tolerance to hypoxia compared with the control cells. In vivo, the left ventricular ejection fraction of hearts implanted with 3D-hiPSC-CT was significantly better than that of the sham control hearts. Histological analysis showed clear expression of collagen type IV and plasma membrane markers such as desmin and dystrophin in vivo after implantation of 3D-hiPSC-CT, which were not detected in 3D-hiPSC-CMs in vitro. Overall, these results indicated that FN-coated 3D-hiPSC-CT could improve distressed heart function in a rat myocardial infarction model with a well-expressed cytoskeletal or basement membrane matrix. Therefore, FN-coated 3D-hiPSC-CT may serve as a promising replacement for heart transplantation and left ventricular assist devices and has the potential to improve survivability and therapeutic efficacy in cases of ischemic heart disease.


2021 ◽  
Author(s):  
Anthony Duchesne ◽  
Jing Dong ◽  
Andrew N. Bayne ◽  
Nguyen-Vi Mohamed ◽  
Wei Yi ◽  
...  

AbstractPatient-derived organoids from induced pluripotent stem cells have emerged as a model for studying human diseases beyond conventional two-dimensional (2D) cell culture. Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, recapitulate cellular architecture, and have the potential to model diseases in complex organs, such as the brain. For example, the hallmark of Parkinson’s disease - proteostatic dysfunction leading to the selective death of neurons in the substantia nigra - present a subtle distinction in cell type specificity that is simply lost in 2D cell culture models. As such, the development of robust methods to study global proteostasis and protein turnover in organoids will remain a critical need as organoid models evolve. To solve this problem, we have designed a workflow to extract proteins from organoids and measure global protein turnover using mass spectrometry and stable isotope labeling using amino acids in cell culture (SILAC). This allowed us to measure the turnover rates of 844 proteins and compare protein turnover to previously reported data in primary cell cultures and in vivo models. Taken together, this method will facilitate the study of proteostasis in organoid models of human disease and will provide an analytical and statistical framework to measure protein turnover in organoids of all cell types.


2021 ◽  
Vol 7 ◽  
Author(s):  
Laura Iop

Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.


Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document