scholarly journals Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergio Alan Cervantes-Pérez ◽  
Lenin Yong-Villalobos ◽  
Nathalia M. V. Florez-Zapata ◽  
Araceli Oropeza-Aburto ◽  
Félix Rico-Reséndiz ◽  
...  

AbstractThe most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.

2021 ◽  
Author(s):  
Sergio Alan Cervantes-Pérez ◽  
Lenin Yong-Villalobos ◽  
Nathalia M.V. Florez-Zapata ◽  
Araceli Oropeza-Aburto ◽  
Felix Rico-Reséndiz ◽  
...  

Abstract The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in compact plant genomes. Because the small genome size of the carnivorous plant Utricularia gibba we investigate the noncoding RNA landscape and global DNA methylation in a compact genome. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of noncoding RNAs and reduced global DNA methylation levels, as determined by a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, reduced DNA methylation correlates with lack of a functional RdDM pathway, as U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs lost key domains required for complete function. Our findings unveil that lack of a functional DCL3 in U. gibba correlates with a decreased proportion of 24-nt small-interfering RNAs, low genome methylation levels, and developmental abnormalities during female gametogenesis that are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of apomixis in compact genomes.


2020 ◽  
Author(s):  
Sergio Alan Cervantes-Pérez ◽  
Lenin Yong-Villalobos ◽  
Nathalia M. V. Florez-Zapata ◽  
Araceli Oropeza-Aburto ◽  
Félix Rico-Reséndiz ◽  
...  

SummaryThe most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), which is a conserved mechanism that involves noncoding-RNAs to control the expansion of intergenic regions. However, little is known about relationship between plant genome size reductions and DNA methylation.Because the compact genome size of the carnivorous plant Utricularia gibba, we investigate in this plant the noncoding-RNA landscape and DNA methylation through a combination of cytological, evolutionary, and genome-wide transcriptomic and methylation approaches.We report an unusual distribution of noncoding RNAs in U. gibba in comparison with other characterized angiosperms, which correlated with a lower level of global genome methylation, as determined by a novel strategy based on long-read DNA sequencing and corroborated by whole-genome bisulfite analysis. Moreover, found that genes involved in the RdDM pathway may not be functionally active in U. gibba, including a truncated DICER-LIKE 3 (DCL3), involved in the production of 24-nt small-RNAs.Our findings suggest that selective pressure to conserve a fully functional RdDM pathway might be reduced in compact genomes and a defective DCL3 correlate with a decreased proportion of 24-nt small-RNAs and developmental alterations in U. gibba, which could represent an initial step in the evolution of apomixis.


2021 ◽  
Vol 118 (30) ◽  
pp. e2100709118
Author(s):  
Kezhi Zheng ◽  
Lili Wang ◽  
Longjun Zeng ◽  
Dachao Xu ◽  
Zhongxin Guo ◽  
...  

RNA-directed DNA methylation (RdDM) functions in de novo methylation in CG, CHG, and CHH contexts. Here, we performed map-based cloning of OsNRPE1, which encodes the largest subunit of RNA polymerase V (Pol V), a key regulator of gene silencing and reproductive development in rice. We found that rice Pol V is required for CHH methylation on RdDM loci by transcribing long noncoding RNAs. Pol V influences the accumulation of 24-nucleotide small interfering RNAs (24-nt siRNAs) in a locus-specific manner. Biosynthesis of 24-nt siRNAs on loci with high CHH methylation levels and low CG and CHG methylation levels tends to depend on Pol V. In contrast, low methylation levels in the CHH context and high methylation levels in CG and CHG contexts predisposes 24-nt siRNA accumulation to be independent of Pol V. H3K9me1 and H3K9me2 tend to be enriched on Pol V–independent 24-nt siRNA loci, whereas various active histone modifications are enriched on Pol V–dependent 24-nt siRNA loci. DNA methylation is required for 24-nt siRNAs biosynthesis on Pol V–dependent loci but not on Pol V–independent loci. Our results reveal the function of rice Pol V for long noncoding RNA production, DNA methylation, 24-nt siRNA accumulation, and reproductive development.


2021 ◽  
Vol 22 (16) ◽  
pp. 8921
Author(s):  
Émile Bélanger ◽  
Catherine Laprise

Epigenetics is a field of study investigating changes in gene expression that do not alter the DNA sequence. These changes are often influenced by environmental or social factors and are reversible. Epigenetic mechanisms include DNA methylation, histone modification, and noncoding RNA. Understanding the role of these epigenetic mechanisms in human diseases provides useful information with regard to disease severity and development. Several studies have searched for the epigenetic mechanisms that regulate allergies and asthma; however, only few studies have used samples of eosinophil, a proinflammatory cell type known to be largely recruited during allergic or asthmatic inflammation. Such studies would enable us to better understand the factors that influence the massive recruitment of eosinophils during allergic and asthmatic symptoms. In this review, we sought to summarize different studies that aimed to discover differential patterns of histone modifications, DNA methylation, and noncoding RNAs in eosinophil samples of individuals with certain diseases, with a particular focus on those with asthma or allergic diseases.


2020 ◽  
Author(s):  
Hasan Mehraj ◽  
Daniel J. Shea ◽  
Satoshi Takahashi ◽  
Naomi Miyaji ◽  
Ayasha Akter ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression were analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels and when both were present, there were further increase in DNA methylation levels. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. Brassica rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events, but the detailed mechanism is not known. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of the B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and offers insights into the function of lncRNA in the Brassica genus.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0242530
Author(s):  
Hasan Mehraj ◽  
Daniel J. Shea ◽  
Satoshi Takahashi ◽  
Naomi Miyaji ◽  
Ayasha Akter ◽  
...  

Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus.


Author(s):  
Caili Li ◽  
Meizhen Wang ◽  
Xiaoxiao Qiu ◽  
Hong Zhou ◽  
Shanfa Lu

Background: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. Objective: This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. Results and Conclusion: So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.


2020 ◽  
Vol 16 (2) ◽  
pp. 86-92
Author(s):  
Rafael Penadés ◽  
Bárbara Arias ◽  
Mar Fatjó-Vilas ◽  
Laura González-Vallespí ◽  
Clemente García-Rizo ◽  
...  

Background: Epigenetic modifications appear to be dynamic and they might be affected by environmental factors. The possibility of influencing these processes through psychotherapy has been suggested. Objective: To analyse the impact of psychotherapy on epigenetics when applied to mental disorders. The main hypothesis is that psychological treatments will produce epigenetic modifications related to the improvement of treated symptoms. Methods: A computerised and systematic search was completed throughout the time period from 1990 to 2019 on the PubMed, ScienceDirect and Scopus databases. Results: In total, 11 studies were selected. The studies were evaluated for the theoretical framework, genes involved, type of psychotherapy and clinical challenges and perspectives. All studies showed detectable changes at the epigenetic level, like DNA methylation changes, associated with symptom improvement after psychotherapy. Conclusion: Methylation profiles could be moderating treatment effects of psychotherapy. Beyond the detected epigenetic changes after psychotherapy, the epigenetic status before the implementation could act as an effective predictor of response.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 759
Author(s):  
Zhongjing Su ◽  
Guangyu Liu ◽  
Bin Zhang ◽  
Ze Lin ◽  
Dongyang Huang

The leukocyte common antigen CD45 is a transmembrane phosphatase expressed on all nucleated hemopoietic cells, and the expression levels of its splicing isoforms are closely related to the development and function of lymphocytes. PEBP1P3 is a natural antisense transcript from the opposite strand of CD45 intron 2 and is predicted to be a noncoding RNA. The genotype-tissue expression and quantitative PCR data suggested that PEBP1P3 might be involved in the regulation of expression of CD45 splicing isoforms. To explore the regulatory mechanism of PEBP1P3 in CD45 expression, DNA methylation and histone modification were detected by bisulfate sequencing PCR and chromatin immunoprecipitation assays, respectively. The results showed that after the antisense RNA PEBP1P3 was knocked down by RNA interference, the DNA methylation of CD45 intron 2 was decreased and histone H3K9 and H3K36 trimethylation at the alternative splicing exons of CD45 DNA was increased. Knockdown of PEBP1P3 also increased the binding levels of chromatin conformation organizer CTCF at intron 2 and the alternative splicing exons of CD45. The present results indicate that the natural antisense RNA PEBP1P3 regulated the alternative splicing of CD45 RNA, and that might be correlated with the regulation of histone modification and DNA methylation.


Oncogene ◽  
2021 ◽  
Vol 40 (17) ◽  
pp. 3164-3179
Author(s):  
Yang Liu ◽  
Tianchi Tang ◽  
Xiaosheng Yang ◽  
Peng Qin ◽  
Pusen Wang ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies and rapidly progressive diseases. Exosomes and long noncoding RNAs (lncRNAs) are emerging as vital mediators in tumor cells and their microenvironment. However, the detailed roles and mechanisms of exosomal lncRNAs in PDAC progression remain unknown. Here, we aimed to clarify the clinical significance and mechanisms of exosomal lncRNA 01133 (LINC01133) in PDAC. We analyzed the expression of LINC01133 in PDAC and found that exosomal LINC01133 expression was high and positively correlated with higher TNM stage and poor overall survival rate of PDAC patients. Further research demonstrated that Periostin could increase exosome secretion and then enhance LINC01133 expression. In addition, Periostin increased p-EGFR, p-Erk, and c-myc expression, and c-myc could bind to the LINC01133 promoter region. These findings suggested that LINC01133 can be regulated by Periostin via EGFR pathway activity. We also observed that LINC01133 promoted the proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) of pancreatic cancer cells. We subsequently evaluated the effect of LINC01133 on the Wnt/β-catenin pathway and confirmed that LINC01133 can interact with Enhancer Of Zeste Homolog 2 (EZH2) and then promote H3K27 trimethylation. This can further silence AXIN2 and suppress GSK3 activity, ultimately activating β-catenin. Collectively, these data indicate that exosomal LINC01133 plays an important role in pancreatic tumor progression, and targeting LINC01133 may provide a potential treatment strategy for PDAC.


Sign in / Sign up

Export Citation Format

Share Document