scholarly journals Highly conductive electronics circuits from aerosol jet printed silver inks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kacper Skarżyński ◽  
Jakub Krzemiński ◽  
Małgorzata Jakubowska ◽  
Marcin Słoma

AbstractRecently, low-cost electronics printed on lightweight, flexible and 3D shaped substrates are gaining importance in the markets of wearables and smart packaging. However, printed electronics do not meet the electrical performance of subtractive techniques because the resistivity of metallic printed patterns is still much higher than that of bulk material. To fulfil this need, low-resistive and easy printable inks for high resolution printed electronics techniques are needed. In this work, parameters of silver nanoparticles ink for micro-scale printed electronics technique, Aerosol Jet Printing, are being enhanced. To increase electrical conductivity and enhance printability, surfactants and dispersing agents were used to increase ultrasonic atomisation efficiency, obtain a uniform structure of printed lines, and narrow the width of printed patterns. Electrical measurements show a decrease in resistivity value in samples enhanced by cationic and non-ionic surfactants, by 95%, compared to initially prepared inks. Surfactant additions to silver nanoparticles Aerosol Jet Printing ink show promising features for application in modern electronics.

2020 ◽  
Vol 834 ◽  
pp. 37-41 ◽  
Author(s):  
Pavel V. Arsenov ◽  
Alexey A. Efimov ◽  
Kirill M. Khabarov ◽  
Denis V. Kornyushin ◽  
Victor V. Ivanov

This article presents a comparison of laser sintering of deposited nanoparticles obtained by two methods of aerosol jet printing. The first printing method was based on the use of silver nanoparticles in the form of microdroplets contained in nanoink. In the second method, dry nanoparticles were obtained as a result of gas-discharge synthesis without the use of solvents. The nanoparticles in both experiments were deposited on a glass substrate in the form of a line with a width of about 50 ± 5 μm and a height of about 1.0 ± 0.2 μm. Then, the obtained lines were sintered using laser radiation with a wavelength of 1064 nm. As a result of experiments on the deposition and sintering, it was found that the electrical resistivity of the lines of sintered nanoparticles in the form of nanoink and dry nanoparticles obtained in a gas discharge was 8.1 and 4.9 μΩ·cm, respectively. Thus, it has been demonstrated that laser sintering of nanoparticles obtained in a gas discharge makes it possible to achieve a lower specific resistance of lines than the method of aerosol printing using nanoink. In addition, the electrical resistivity of the lines of sintered nanoparticles obtained in a gas discharge is 3 times greater than the electrical resistivity of bulk silver, which is a sufficient result for the creation of conductive elements of printed electronics.


Author(s):  
Andrew Claypole ◽  
James Claypole ◽  
Tim Claypole ◽  
David Gethin ◽  
Liam Kilduff

Abstract Carbon-based pastes and inks are used extensively in a wide range of printed electronics because of their widespread availability, electrical conductivity and low cost. Overcoming the inherent tendency of the nano-carbon to agglomerate to form a stable dispersion is necessary if these inks are to be taken from the lab scale to industrial production. Plasma functionalization of graphite nanoplatelets (GNP) adds functional groups to their surface to improve their interaction with the polymer resin. This offers an attractive method to overcome these problems when creating next generation inks. Both dynamic and oscillatory rheology were used to evaluate the stability of inks made with different loadings of functionalized and unfunctionalized GNP in a thin resin, typical of a production ink. The rheology and the printability tests showed the same level of dispersion and electrical performance had been achieved with both functionalized and unfunctionalized GNPs. The unfunctionalized GNPs agglomerate to form larger, lower aspect particles, reducing interparticle interactions and particle–medium interactions. Over a 12-week period, the viscosity, shear thinning behavior and viscoelastic properties of the unfunctionalized GNP inks fell, with decreases in viscosity at 1.17 s−1 of 24, 30, 39% for the ϕ = 0.071, 0.098, 0.127 GNP suspensions, respectively. However, the rheological properties of the functionalized GNP suspensions remained stable as the GNPs interacted better with the polymer in the resin to create a steric barrier which prevented the GNPs from approaching close enough for van der Waals forces to be effective.


Author(s):  
Hongyue Sun ◽  
Kan Wang ◽  
Yifu Li ◽  
Chuck Zhang ◽  
Ran Jin

Aerosol jet printing (AJP) is a direct write technology that enables fabrication of flexible, fine scale printed electronics on conformal substrates. AJP does not require the time consuming mask and postpatterning processes compared with traditional electronics manufacturing techniques. Thus, the cycle time can be dramatically reduced, and highly personalized designs of electronics can be realized. AJP has been successfully applied to a variety of industries, with different combinations of inks and substrates. However, the quality of the printed electronics, such as resistance, is not able to be measured online. On the other hand, the microscopic image sensors are widely used for printed circuit boards (PCBs) quality quantification and inspection. In this paper, two widely used quality variables of printed electronics, resistance and overspray, will be jointly modeled based on microscopic images for fast quality assessment. Augmented quantitative and qualitative (AUGQQ) models are proposed to use features of microscopic images taken at different locations on the printed electronics as input variables, and resistance and overspray as output variables. The association of resistance and overspray can be investigated through the AUGQQ models formulation. A case study for fabricating silver lines with Optomec® aerosol jet system is used to evaluate the model performance. The proposed AUGQQ models can help assess the printed electronics quality and identify important image features in a timely manner.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 841 ◽  
Author(s):  
Mauro Serpelloni ◽  
Edoardo Cantù ◽  
Michela Borghetti ◽  
Emilio Sardini

Printed electronics is an expanding research field that can reach the goal of reducing the environmental impact on electronics exploiting renewable and biodegradable materials, like paper. In our work, we designed and tested a new method for fabricating hybrid smart devices on cellulose substrates by aerosol jet printing (AJP) and photonic curing, also known as flash lamp annealing (FLA), capable to cure low temperature materials without any damage. Three different cellulose-based materials (chromatographic paper, photopaper, cardboard) were tested. Multilayer capability and SMDs (surface mount devices) interconnections are possible permitting high flexibility in the fabrication process. Electrical and geometrical tests were performed to analyze the behavior of printed samples. Resulted resistivities are 26.3 × 10−8 Ω⋅m on chromatographic paper, 22.3 × 10−8 Ω⋅m on photopaper and 13.1 × 10−8 Ω⋅m on cardboard. Profilometer and optical microscope evaluations were performed to state deposition quality and penetration of the ink in cellulose materials (thicknesses equal to 24.9, 28.5, and 51 μm respectively for chromatographic paper, photopaper, and cardboard). Furthermore, bending (only chromatographic paper did not reach the break-up) and damp environment tests (no significant variations in resistance) where performed. A final prototype of a complete functioning multilayer smart devices on cellulose 3D-substrate is shown, characterized by multilayers, capacitive sensors, SMDs interconnections.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000052-000055
Author(s):  
Christopher Oakley ◽  
Premjeet Chahal ◽  
John Papapolymerou ◽  
John D. Albrecht

Abstract This paper presents a low-cost additive manufacturing method for rapid prototyping of millimeter and microwave circuits using aerosol jet printing of silver nanoparticle ink deposited on commercially available liquid crystal polymer (LCP) substrate material. Two passive circuit elements, a 50 Ω microstrip transmission line and a band-stop microstrip resonator, were designed, fabricated and measured. These passive elements form the basis of a printed X-band transistor-based oscillator circuit in which all metal layers have been printed, including metalized vias. Impacts of via metallization quality on oscillator performance are obtained by comparing measured data and designs. We conclude that printed metal quality (conductivity, roughness and uniformity) is an important fabrication issue for obtaining high-performance 3D printed circuits.


Author(s):  
Jack P. Lombardi ◽  
Roozbeh (Ross) Salary ◽  
Darshana L. Weerawarne ◽  
Prahalada K. Rao ◽  
Mark D. Poliks

Aerosol jet printing (AJP) is a complex process for additive electronics that is often unstable. To overcome this instability, observation while printing and control of the printing process using image-based monitoring is demonstrated. This monitoring is validated against images taken after the print and shown highly correlated and useful for the determination of printed linewidth. These images and the observed linewidth are used as input for closed-loop control of the printing process, with print speed changed in response to changes in the observed linewidth. Regression is used to relate these quantities and forms the basis of proportional and proportional integral control. Electrical test structures were printed with controlled and uncontrolled printing, and it was found that the control influenced their linewidth and electrical properties, giving improved uniformity in both size and electrical performance.


2021 ◽  
Vol 11 (2) ◽  
pp. 526
Author(s):  
Ivan A. Volkov ◽  
Nikolay P. Simonenko ◽  
Alexey A. Efimov ◽  
Tatiana L. Simonenko ◽  
Ivan S. Vlasov ◽  
...  

We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 °C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 μm thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 °C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000935-000939
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity would be critical for low-cost printed electronics. In view of printability, conductivity, and electrical stability, metal such as gold or silver derived from solution-deposited precursor compositions would be an ideal candidate. Xerox has been exploring the use of silver nanoparticles as conductor precursor composition for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at low temperature (∼ 120 °C) for high conductivity (>10000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates which allows for large-area, defect-free source drain arrays to be printed with a narrow and uniform channel length.


Sign in / Sign up

Export Citation Format

Share Document