scholarly journals Ca2+ imbalance caused by ERdj5 deletion affects mitochondrial fragmentation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riyuji Yamashita ◽  
Shohei Fujii ◽  
Ryo Ushioda ◽  
Kazuhiro Nagata

AbstractThe endoplasmic reticulum (ER) is the organelle responsible for the folding of secretory/membrane proteins and acts as a dynamic calcium ion (Ca2+) store involved in various cellular signalling pathways. Previously, we reported that the ER-resident disulfide reductase ERdj5 is involved in the ER-associated degradation (ERAD) of misfolded proteins in the ER and the activation of SERCA2b, a Ca2+ pump on the ER membrane. These results highlighted the importance of the regulation of redox activity in both Ca2+ and protein homeostasis in the ER. Here, we show that the deletion of ERdj5 causes an imbalance in intracellular Ca2+ homeostasis, the activation of Drp1, a cytosolic GTPase involved in mitochondrial fission, and finally the aberrant fragmentation of mitochondria, which affects cell viability as well as phenotype with features of cellular senescence. Thus, ERdj5-mediated regulation of intracellular Ca2+ is essential for the maintenance of mitochondrial homeostasis involved in cellular senescence.

2021 ◽  
Vol 22 (13) ◽  
pp. 7123
Author(s):  
Barbara Pascucci ◽  
Francesca Spadaro ◽  
Donatella Pietraforte ◽  
Chiara De Nuccio ◽  
Sergio Visentin ◽  
...  

Cockayne syndrome group A (CS-A) is a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. Cells derived from CS-A patients present as pathological hallmarks excessive oxidative stress, mitochondrial fragmentation and apoptosis associated with hyperactivation of the mitochondrial fission dynamin related protein 1 (DRP1). In this study, by using human cell models we further investigated the interplay between DRP1 and CSA and we determined whether pharmacological or genetic inhibition of DRP1 affects disease progression. Both reactive oxygen and nitrogen species are in excess in CS-A cells and when the mitochondrial translocation of DRP1 is inhibited a reduction of these species is observed together with a recovery of mitochondrial integrity and a significant decrease of apoptosis. This study indicates that the CSA-driven modulation of DRP1 pathway is key to control mitochondrial homeostasis and apoptosis and suggests DRP1 as a potential target in the treatment of CS patients.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 698
Author(s):  
Sarah Courtois ◽  
Beatriz de Luxán-Delgado ◽  
Laure Penin-Peyta ◽  
Alba Royo-García ◽  
Beatriz Parejo-Alonso ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, partly due to its intrinsic aggressiveness, metastatic potential, and chemoresistance of the contained cancer stem cells (CSCs). Pancreatic CSCs strongly rely on mitochondrial metabolism to maintain their stemness, therefore representing a putative target for their elimination. Since mitochondrial homeostasis depends on the tightly controlled balance between fusion and fission processes, namely mitochondrial dynamics, we aim to study this mechanism in the context of stemness. In human PDAC tissues, the mitochondrial fission gene DNM1L (DRP1) was overexpressed and positively correlated with the stemness signature. Moreover, we observe that primary human CSCs display smaller mitochondria and a higher DRP1/MFN2 expression ratio, indicating the activation of the mitochondrial fission. Interestingly, treatment with the DRP1 inhibitor mDivi-1 induced dose-dependent apoptosis, especially in CD133+ CSCs, due to the accumulation of dysfunctional mitochondria and the subsequent energy crisis in this subpopulation. Mechanistically, mDivi-1 inhibited stemness-related features, such as self-renewal, tumorigenicity, and invasiveness and chemosensitized the cells to the cytotoxic effects of Gemcitabine. In summary, mitochondrial fission is an essential process for pancreatic CSCs and represents an attractive target for designing novel multimodal treatments that will more efficiently eliminate cells with high tumorigenic potential.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Michael Coronado ◽  
Giovanni Fajardo ◽  
Kim Nguyen ◽  
Mingming Zhao ◽  
Kristina Bezold Kooiker ◽  
...  

Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Current paradigms hold that mitochondrial fission and fragmentation are the result of pathologic stresses such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in cardiac impairment, suggesting that fission is important for maintaining normal mitochondrial function. In this study, we identify a novel role for mitochondrial fragmentation as a normal physiological adaptation to increased energetic demand. Using two models of exercise, we demonstrate that “physiologic” mitochondrial fragmentation occurs, results in enhanced mitochondrial function, and is mediated through beta 1-adrenergic receptor signaling. Similar to pathologic fragmentation, physiologic fragmentation is induced by activation of Drp1; however, unlike pathologic fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. To confirm the role of fragmentation as a physiological adaptation to exercise, we inhibited the pro-fission mediator Drp1 in mice using the peptide inhibitor P110 and had mice undergo exercise. Mice treated with P110 had significantly decreased exercise capacity, decreased fragmentation and inactive Drp1 vs controls. To further confirm these findings, we generated cardiac-specific Drp1 KO mice and had them undergo exercise. Mice with cardiac specific Drp1 KO had significantly decreased exercise capacity and abnormally large mitochondria compared to controls. These findings indicate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise and support the still evolving conceptual framework, where fragmentation plays a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


2018 ◽  
Vol 132 (20) ◽  
pp. 2163-2167 ◽  
Author(s):  
Hannah A. Cooper ◽  
Satoru Eguchi

Ischemia reperfusion (I/R) injury is a common event following myocardial infarction (MI) resulting in excessive oxidative stress, calcium overload, inflammation, and cardiomyocyte death. Mitochondrial homeostasis including their dynamics are imbalanced in cardiac I/R injury in favor of increased mitochondrial fission. Inhibition of mitochondrial fission prior to I/R injury is protective and improves cardiac function following MI. Clinically, patients with MI often receive treatment following initiation of the ischemic event. Thus, treatments with more realistic timing would have better translational value and are important to research. In a recent study published in Clinical Science, Maneechote et al. [Clin. Sci. (2018) 132, 1669–1683] examined the effect of inhibiting mitochondrial fission using the mitochondrial division inhibitor (Mdivi-1) at different time points, pre-ischemia, during-ischemia, and upon onset of reperfusion, in a rat cardiac I/R model. The findings showed the greatest cardiac function improvement with pre-ischemia treatment along with decreased mitochondrial fragmentation and increased mitochondrial function. Mdivi-1 given during ischemia and at onset of reperfusion also improved cardiac function, but to a lesser extent than pre-ischemia intervention. Maneechote et al. postulated that the LV protection by Mdivi-1 in cardiac I/R could be due to an improvement in mitochondrial dysfunction through attenuating excessive mitochondrial fission which then reduces apoptotic myocytes. Their findings provide new insights into future treatment of patients suffering acute MI which could consider targetting the excessive mitochondrial fission during cardiac ischemia or at onset of reperfusion. Here, we will further discuss the background of the study, potential molecular mechanisms of mitochondrial fission, consequences of the fission, and future research directions.


2019 ◽  
Vol 12 (579) ◽  
pp. eaav1439 ◽  
Author(s):  
Olha M. Koval ◽  
Emily K. Nguyen ◽  
Velarchana Santhana ◽  
Trevor P. Fidler ◽  
Sara C. Sebag ◽  
...  

The role of the mitochondrial Ca2+uniporter (MCU) in physiologic cell proliferation remains to be defined. Here, we demonstrated that the MCU was required to match mitochondrial function to metabolic demands during the cell cycle. During the G1-S transition (the cycle phase with the highest mitochondrial ATP output), mitochondrial fusion, oxygen consumption, and Ca2+uptake increased in wild-type cells but not in cells lacking MCU. In proliferating wild-type control cells, the addition of the growth factors promoted the activation of the Ca2+/calmodulin-dependent kinase II (CaMKII) and the phosphorylation of the mitochondrial fission factor Drp1 at Ser616. The lack of the MCU was associated with baseline activation of CaMKII, mitochondrial fragmentation due to increased Drp1 phosphorylation, and impaired mitochondrial respiration and glycolysis. The mitochondrial fission/fusion ratio and proliferation in MCU-deficient cells recovered after MCU restoration or inhibition of mitochondrial fragmentation or of CaMKII in the cytosol. Our data highlight a key function for the MCU in mitochondrial adaptation to the metabolic demands during cell cycle progression. Cytosolic CaMKII and the MCU participate in a regulatory circuit, whereby mitochondrial Ca2+uptake affects cell proliferation through Drp1.


2021 ◽  
Author(s):  
Hema Saranya Ilamathi ◽  
Mathieu Ouellet ◽  
Rasha Sabouny ◽  
Justine Desrochers-Goyette ◽  
Matthew A Lines ◽  
...  

Mitochondrial DNA (mtDNA) maintenance is essential to sustain a functionally healthy population of mitochondria within cells. Proper mtDNA replication and distribution within mitochondrial networks are essential to maintain mitochondrial homeostasis. However, the fundamental basis of mtDNA segregation and distribution within mitochondrial networks is still unclear. To address these questions, we developed an algorithm, Mitomate tracker to unravel the global distribution of nucleoids within mitochondria. Using this tool, we decipher the semi-regular spacing of nucleoids across mitochondrial networks. Furthermore, we show that mitochondrial fission actively regulates mtDNA distribution by controlling the distribution of nucleoids within mitochondrial networks. Specifically, we found that primary cells bearing disease-associated mutations in the fission proteins DRP1 and MYH14 show altered nucleoid distribution, and acute enrichment of enlarged nucleoids near the nucleus. Further analysis suggests that the altered nucleoid distribution observed in the fission mutants is the result of both changes in network structure and nucleoid density. Thus, our study provides novel insights into the role of mitochondria fission in nucleoid distribution and the understanding of diseases caused by fission defects.


Author(s):  
Laura M. Szczesniak ◽  
Caden G. Bonzerato ◽  
Richard J. H. Wojcikiewicz

The function of the Bcl-2 family member Bok is currently enigmatic, with various disparate roles reported, including mediation of apoptosis, regulation of mitochondrial morphology, binding to inositol 1,4,5-trisphosphate receptors, and regulation of uridine metabolism. To better define the roles of Bok, we examined its interactome using TurboID-mediated proximity labeling in HeLa cells, in which Bok knock-out leads to mitochondrial fragmentation and Bok overexpression leads to apoptosis. Labeling with TurboID-Bok revealed that Bok was proximal to a wide array of proteins, particularly those involved in mitochondrial fission (e.g., Drp1), endoplasmic reticulum-plasma membrane junctions (e.g., Stim1), and surprisingly among the Bcl-2 family members, just Mcl-1. Comparison with TurboID-Mcl-1 and TurboID-Bak revealed that the three Bcl-2 family member interactomes were largely independent, but with some overlap that likely identifies key interactors. Interestingly, when overexpressed, Mcl-1 and Bok interact physically and functionally, in a manner that depends upon the transmembrane domain of Bok. Overall, this work shows that the Bok interactome is different from those of Mcl-1 and Bak, identifies novel proximities and potential interaction points for Bcl-2 family members, and suggests that Bok may regulate mitochondrial fission via Mcl-1 and Drp1.


2021 ◽  
Author(s):  
Elissa Tjahjono ◽  
Jingqi Pei ◽  
Alexey V Revtovich ◽  
Terri-Jeanne E Liu ◽  
Alisha Swadi ◽  
...  

Macroautophagic recycling of dysfunctional mitochondria, known as mitophagy, is essential for mitochondrial homeostasis and cell viability. Accumulation of defective mitochondria and impaired mitophagy have been widely implicated in many neurodegenerative diseases, and loss-of-function mutations of two regulators of mitophagy, PINK1 and Parkin, are amongst the most common causes of recessive Parkinson's disease. Activation of mitophagy via pharmacological treatments may be a feasible approach for combating neurodegeneration. In this effort, we screened ~45,000 small molecules for the ability to activate mitophagy. A high-throughput, whole-organism, phenotypic screen was conducted by monitoring stabilization of PINK-1/PINK1, a key event in mitophagy activation, in a Caenorhabditis elegans strain carrying a Ppink-1::PINK-1::GFP reporter. We obtained eight hits that induced mitophagy, as evidenced by increased mitochondrial fragmentation and autophagosome formation. Several of the compounds also reduced ATP production, oxygen consumption, mitochondrial mass, and/or mitochondrial membrane potential. Importantly, we found that treatment with two compounds, which we named PS83 and PS106 (more commonly known as sertraline) reduced neurodegenerative disease phenotypes (including delayed paralysis in a C. elegans Alzheimer's model) in a PINK-1/PINK1-dependent manner. This report presents a promising step toward the identification of compounds that will stimulate mitochondrial turnover.


Sign in / Sign up

Export Citation Format

Share Document