scholarly journals Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veronica Diez ◽  
Sofia Traikov ◽  
Kathrin Schmeisser ◽  
Akshay Kumar Das Adhikari ◽  
Teymuras Vakhtang Kurzchalia

AbstractUpon exposure to excessive reactive oxygen species (ROS), organismal survival depends on the strength of the endogenous antioxidant defense barriers that prevent mitochondrial and cellular deterioration. Previously, we showed that glycolic acid can restore the mitochondrial membrane potential of C. elegans treated with paraquat, an oxidant that produces superoxide and other ROS species, including hydrogen peroxide. Here, we demonstrate that glycolate fully suppresses the deleterious effects of peroxide on mitochondrial activity and growth in worms. This endogenous compound acts by entering serine/glycine metabolism. In this way, conversion of glycolate into glycine and serine ameliorates the drastically decreased NADPH/NADP+ and GSH/GSSG ratios induced by H2O2 treatment. Our results reveal the central role of serine/glycine metabolism as a major provider of reducing equivalents to maintain cellular antioxidant systems and the fundamental function of glycolate as a natural antioxidant that improves cell fitness and survival.

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1087
Author(s):  
Fabrizio Guarneri ◽  
Lucrezia Bertino ◽  
Giovanni Pioggia ◽  
Marco Casciaro ◽  
Sebastiano Gangemi

Oxidative stress plays an important pathogenetic role in many chronic inflammatory diseases, including those of dermatological interest. In particular, regarding psoriasis, vitiligo, and lichen planus, excess reactive oxygen species and a decline in endogenous antioxidant systems are observed. In this regard, treatments with antioxidant properties could be appropriate therapeutic options. To date, clinical trials in dermatology on these treatments are limited. We reviewed the available studies on the efficacy of antioxidant therapies in psoriasis, vitiligo, and lichen planus. The role of herbal derivatives, vitamins, and trace elements was analyzed. The antioxidant properties of conventional therapies were also evaluated. Data from the literature suggest that antioxidants might be useful, but available studies on this topic are limited, heterogeneous, not completely standardized, and on small populations. Furthermore, in most cases, antioxidants alone are unable to induce significant clinical changes, except perhaps in mild forms, and must be used in conjunction with standard drug treatments to achieve measurable results. Further studies need to be conducted, considering larger populations and using internationally validated scales, in order to compare the results and clinical efficacy.


2021 ◽  
Vol 22 (5) ◽  
pp. 2633
Author(s):  
Giuseppina Adiletta ◽  
Marisa Di Matteo ◽  
Milena Petriccione

Chitosan-based edible coatings represent an eco-friendly and biologically safe preservative tool to reduce qualitative decay of fresh and ready-to-eat fruits during post-harvest life due to their lack of toxicity, biodegradability, film-forming properties, and antimicrobial actions. Chitosan-based coatings modulate or control oxidative stress maintaining in different manner the appropriate balance of reactive oxygen species (ROS) in fruit cells, by the interplay of pathways and enzymes involved in ROS production and the scavenging mechanisms which essentially constitute the basic ROS cycle. This review is carried out with the aim to provide comprehensive and updated over-view of the state of the art related to the effects of chitosan-based edible coatings on anti-oxidant systems, enzymatic and non-enzymatic, evaluating the induced oxidative damages during storage in whole and ready-to-eat fruits. All these aspects are broadly reviewed in this review, with particular emphasis on the literature published during the last five years.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1082 ◽  
Author(s):  
Christina Thanas ◽  
Panos G. Ziros ◽  
Dionysios V. Chartoumpekis ◽  
Cédric O. Renaud ◽  
Gerasimos P. Sykiotis

The thyroid gland has a special relationship with oxidative stress. On the one hand, like all other tissues, it must defend itself against reactive oxygen species (ROS). On the other hand, unlike most other tissues, it must also produce reactive oxygen species in order to synthesize its hormones that contribute to the homeostasis of other tissues. The thyroid must therefore also rely on antioxidant defense systems to maintain its own homeostasis in the face of continuous self-exposure to ROS. One of the main endogenous antioxidant systems is the pathway centered on the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) and its cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1). Over the last few years, multiple links have emerged between the Keap1/Nrf2 pathway and thyroid physiology, as well as various thyroid pathologies, including autoimmunity, goiter, hypothyroidism, hyperthyroidism, and cancer. In the present mini-review, we summarize recent studies shedding new light into the roles of Keap1/Nrf2 signaling in the thyroid.


2020 ◽  
Vol 2020 ◽  
pp. 1-29 ◽  
Author(s):  
Rossella D’Oria ◽  
Rossella Schipani ◽  
Anna Leonardini ◽  
Annalisa Natalicchio ◽  
Sebastio Perrini ◽  
...  

Reactive oxygen species (ROS) are highly reactive chemical species containing oxygen, controlled by both enzymatic and nonenzymatic antioxidant defense systems. In the heart, ROS play an important role in cell homeostasis, by modulating cell proliferation, differentiation, and excitation-contraction coupling. Oxidative stress occurs when ROS production exceeds the buffering capacity of the antioxidant defense systems, leading to cellular and molecular abnormalities, ultimately resulting in cardiac dysfunction. In this review, we will discuss the physiological sources of ROS in the heart, the mechanisms of oxidative stress-related myocardial injury, and the implications of experimental studies and clinical trials with antioxidant therapies in cardiovascular diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ha-il Jung ◽  
Bok-Rye Lee ◽  
Mi-Jin Chae ◽  
Eun-Jin Lee ◽  
Tae-Gu Lee ◽  
...  

The role of ascorbate (AsA) in antioxidant defense system-associated resistance to cadmium (Cd) in oilseed rape plants has not yet been clearly demonstrated. The present study investigated the critical role of exogenous AsA on the physiological and biochemical responses of reactive oxygen species (ROS) and antioxidant scavenging defense systems in oilseed rape (Brassica napus L. cv. Tammi) seedlings exposed to Cd. Cd (10 μM) treatment led to significant reductions in plant growth; increases in the levels of superoxide anion radical, hydrogen peroxide, and malondialdehyde; and increases in Cd uptake and accumulation by the roots and shoots in hydroponically grown 10-day-old seedlings. Moreover, it reduced AsA content and AsA redox ratios, which have been correlated with reductions in glutathione (GSH) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox status. However, exogenously applying AsA to Cd-exposed seedlings decreased Cd-induced ROS, improved antioxidant defense systems by increasing AsA, GSH, and NADPH contents, and increased Cd uptake and accumulation in both roots and shoots of the plants. These results provided evidence that the enhancement in AsA redox status can be linked to an increase in the GSH and/or NADPH redox ratios through the induction of the AsA–GSH–NADPH cycle. Thus, these results suggest that exogenous AsA application to oilseed rape seedlings under Cd stress might alleviate the overall Cd toxicity by regulating the homeostasis of the AsA–GSH–NADPH cycle, which reestablishes the steady-state cellular redox status.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcela Cristina Rabelo ◽  
Woo Young Bang ◽  
Vimal Nair ◽  
Ricardo Elesbao Alves ◽  
Daniel A. Jacobo-Velázquez ◽  
...  

AbstractThe effects of ultraviolet-C light (UVC) on vitamin C and phenolic compounds in acerola during postharvest storage were investigated in order to elucidate the mechanism inducing the antioxidant systems. The fruits, stored at 10 °C for 7 days after a hormetic UVC irradiation (two pulses of 0.3 J/cm2), showed significantly less degradation of vitamin C and phenolic compounds than the control without the UVC challenge. UVC activated the L-galactono-1,4-lactone dehydrogenase (GalDH), a key enzyme for vitamin C biosynthesis, and altered the composition of phenolic compounds, through phenolic biosynthesis, in acerola during postharvest storage. UVC also induced reactive oxygen species (ROS) productions at immediate (day 0) and late (day 7) times during postharvest storage through the mitochondrial electron transport chain and NADPH oxidase, respectively. Results suggest that UVC helps in the retention of vitamin C and phenolic content in acerola by altering ascorbic acid and phenolic metabolism through an increase in mitochondrial activity and a ROS-mediated mechanism. Data showed the beneficial effects of UVC on maintenance of nutraceutical quality in acerola during postharvest storage and supplied new insights into understanding the mechanism by which UVC irradiation enhance the antioxidant system in fruits.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1801 ◽  
Author(s):  
Bee Ling Tan ◽  
Mohd Esa Norhaizan

Despite an increase in life expectancy that indicates positive human development, a new challenge is arising. Aging is positively associated with biological and cognitive degeneration, for instance cognitive decline, psychological impairment, and physical frailty. The elderly population is prone to oxidative stress due to the inefficiency of their endogenous antioxidant systems. As many studies showed an inverse relationship between carotenoids and age-related diseases (ARD) by reducing oxidative stress through interrupting the propagation of free radicals, carotenoid has been foreseen as a potential intervention for age-associated pathologies. Therefore, the role of carotenoids that counteract oxidative stress and promote healthy aging is worthy of further discussion. In this review, we discussed the underlying mechanisms of carotenoids involved in the prevention of ARD. Collectively, understanding the role of carotenoids in ARD would provide insights into a potential intervention that may affect the aging process, and subsequently promote healthy longevity.


1999 ◽  
Vol 161 (2) ◽  
pp. 199-210 ◽  
Author(s):  
CJ Newton ◽  
N Drummond ◽  
CH Burgoyne ◽  
V Speirs ◽  
GK Stalla ◽  
...  

Reactive oxygen species (ROS) play a fundamental role in both apoptotic and necrotic cell death. Their importance is highlighted by studies showing that they mediate cell death in response to radiotherapy and to some forms of chemotherapy. Here we provide the first evidence for a role of ROS in response to an antiendocrine agent currently undergoing clinical trials. Using the oestrogen receptor (ER) containing rat pituitary GH3 cell line, we show that cell death is induced by the pure steroidal antioestrogen, ZM 182780, and that this is blocked by the antioxidant, N-acetyl cysteine (NAC). By flow cytometry, we show that, prior to the onset of DNA breakdown measured by ELISA, ZM 182780 exposure has no significant effect on intracellular oxidant concentrations. In contrast, ZM 182780 exposure greatly increases sensitivity to oxidants generated by blocking cellular antioxidant pathways and from exogenous administration of hydrogen peroxide (H2O2). As both necrosis and apoptosis are controlled by mitochondrial function, further experiments conducted to determine mitochondrial membrane potential (Delta|gWm) have indicated that the ZM 182780-induced loss of ER function increases the ease with which oxidants collapse mitochondrial activity and, as a consequence, cell death.


2014 ◽  
Vol 1010-1012 ◽  
pp. 142-146 ◽  
Author(s):  
Dong Sheng Shen ◽  
Xiao Qing Tao ◽  
Chen Chao Shen ◽  
Jia Li Shentu ◽  
Mei Zhen Wang

The responses of antioxidant systems after exposing Eisenia fetida to actual soil contaminated with PCBs were investigated. Among antioxidant enzymes, the primary response to early PCBs exposure can be attributed to catalase (CAT) and peroxidase (POD). These two enzymes could have a combined effect on fighting damage by reactive oxygen species. An obvious increase in the activity of CAT was recorded at 4 mg kg-1 compared to the control throughout the whole test days. PCBs exposure caused changes in POD activity in 2d and 4d. However, the activity of POD in E. fetida tissues changed little with PCBs concentrations in day 8 and 16d. Superoxide dismutase (SOD) changed little with PCBs in different time. The results suggest that the variations in CAT and POD of E. fetida could be used as early responsive biomarkers for oxidative stress caused by PCBs in a soil environment.


Sign in / Sign up

Export Citation Format

Share Document