scholarly journals PUFA synthase-independent DHA synthesis pathway in Parietichytrium sp. and its modification to produce EPA and n-3DPA

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yohei Ishibashi ◽  
Hatsumi Goda ◽  
Rie Hamaguchi ◽  
Keishi Sakaguchi ◽  
Takayoshi Sekiguchi ◽  
...  

AbstractThe demand for n-3 long-chain polyunsaturated fatty acids (n-3LC-PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), will exceed their supply in the near future, and a sustainable source of n-3LC-PUFAs is needed. Thraustochytrids are marine protists characterized by anaerobic biosynthesis of DHA via polyunsaturated fatty acid synthase (PUFA-S). Analysis of a homemade draft genome database suggested that Parietichytrium sp. lacks PUFA-S but possesses all fatty acid elongase (ELO) and desaturase (DES) genes required for DHA synthesis. The reverse genetic approach and a tracing experiment using stable isotope-labeled fatty acids revealed that the ELO/DES pathway is the only DHA synthesis pathway in Parietichytrium sp. Disruption of the C20 fatty acid ELO (C20ELO) and ∆4 fatty acid DES (∆4DES) genes with expression of ω3 fatty acid DES in this thraustochytrid allowed the production of EPA and n-3docosapentaenoic acid (n-3DPA), respectively, at the highest level among known microbial sources using fed-batch culture.

Glycobiology ◽  
2021 ◽  
Author(s):  
Ikumi Endo ◽  
Takashi Watanabe ◽  
Tomofumi Miyamoto ◽  
Hatsumi Monjusho-Goda ◽  
Junichiro Ohara ◽  
...  

Abstract Thraustochytrids, unicellular marine protists, synthesize polyunsaturated fatty acids (PUFAs) and PUFA-containing phospholipids; however, little is known about their glycolipids and their associated metabolism. Here, we report two glycolipids (GL-A, B) and their synthases in Aurantiochytrium limacinum mh0186. Two glycolipids were purified from A. limacinum mh0186, and they were determined by gas chromatography, mass spectrometry and two-dimensional nuclear magnetic resonance to be 3-O-β-D-glucopyranosyl-stigmasta-5,7,22-triene (GL-A) and 3-O-β-D-glucopyranosyl-4α-methyl-stigmasta-7,22-diene (GL-B), both of which are sterol β-glucosides (β-SGs); the structure of GL-B has not been reported thus far. Seven candidate genes responsible for the synthesis of these β-SGs were extracted from the draft genome database of A. limacinum using the yeast sterol β-glucosyltransferase (SGT; EC 2.4.1.173) sequence as a query. Expression analysis using Saccharomyces cerevisiae revealed that two gene products (AlSGT-1 and 2) catalyze the transfer of glucose from UDP-glucose to sterols, generating sterylglucosides (SGs). Compared to AlSGT-1, AlSGT-2 exhibited wide specificity for sterols and used C4-monomethylsterol to synthesize GL-B. The disruption of alsgt-2 but not alsgt-1 in strain mh0186 resulted in a decrease in total SG and almost complete loss of GL-B, indicating that AlSGT-2 is responsible for the synthesis of β-SGs in A. limacinum mh0186, especially GL-B, which possesses a unique sterol structure.


Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


2020 ◽  
Author(s):  
Michael Hulse ◽  
Sarah M Johnson ◽  
Sarah Boyle ◽  
Lisa Beatrice Caruso ◽  
Italo Tempera

Latent membrane protein 1 (LMP1) is the major transforming protein of Epstein-Barr virus (EBV) and is critical for EBV-induced B-cell transformation in vitro. Several B-cell malignancies are associated with latent LMP1-positive EBV infection, including Hodgkin’s and diffuse large B-cell lymphomas. We have previously reported that promotion of B cell proliferation by LMP1 coincided with an induction of aerobic glycolysis. To further examine LMP1-induced metabolic reprogramming in B cells, we ectopically expressed LMP1 in an EBV-negative Burkitt’s lymphoma (BL) cell line preceding a targeted metabolic analysis. This analysis revealed that the most significant LMP1-induced metabolic changes were to fatty acids. Significant changes to fatty acid levels were also found in primary B cells following EBV-mediated B-cell growth transformation. Ectopic expression of LMP1 and EBV-mediated B-cell growth transformation induced fatty acid synthase (FASN) and increased lipid droplet formation. FASN is a crucial lipogenic enzyme responsible for de novo biogenesis of fatty acids in transformed cells. Furthermore, inhibition of lipogenesis caused preferential killing of LMP1-expressing B cells and significantly hindered EBV immortalization of primary B-cells. Finally, our investigation also found that USP2a, a ubiquitin-specific protease, is significantly increased in LMP1-positive BL cells and mediates FASN stability. Our findings demonstrate that ectopic expression of LMP1 and EBV-mediated B-cell growth transformation leads to induction of FASN, fatty acids and lipid droplet formation, possibly pointing to a reliance on lipogenesis. Therefore, the use of lipogenesis inhibitors could potentially be used in the treatment of LMP1+ EBV associated malignancies by targeting a LMP1-specific dependency on lipogenesis. Importance Despite many attempts to develop novel therapies, EBV-specific therapies currently remain largely investigational and EBV-associated malignancies are often associated with a worse prognosis. Therefore, there is a clear demand for EBV-specific therapies for both prevention and treatment of viral-associated malignancies. Non-cancerous cells preferentially obtain fatty acids from dietary sources whereas cancer cells will often produce fatty acids themselves by de novo lipogenesis, often becoming dependent on the pathway for cell survival and proliferation. LMP1 and EBV-mediated B-cell growth transformation leads to induction of FASN, a key enzyme responsible for the catalysis of endogenous fatty acids. Preferential killing of LMP1-expressing B cells following inhibition of FASN suggests that targeting LMP-induced lipogenesis could be an effective strategy in treating LMP1-positive EBV-associated malignancies. Importantly, targeting unique metabolic perturbations induced by EBV could be a way to explicitly target EBV-positive malignancies and distinguish their treatment from EBV-negative counterparts.


2020 ◽  
Vol 117 (38) ◽  
pp. 23557-23564
Author(s):  
Alex Ruppe ◽  
Kathryn Mains ◽  
Jerome M. Fox

Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) ofEscherichia coliand paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures—and helps explain—the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives—the total production, unsaturated fraction, and average length of fatty acids—than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.


2019 ◽  
Vol 71 (1) ◽  
pp. 303-313 ◽  
Author(s):  
C. Esteves ◽  
K.G. Livramento ◽  
L.V. Paiva ◽  
A.P. Peconick ◽  
I.F.F. Garcia ◽  
...  

ABSTRACT The present study aimed to evaluate the occurrence of polymorphisms in Diacylglycerol acyltransferase (DGTA-1 and 2), Fatty acid synthase (FASN), Stearoyl-CoA desaturase (SCD) genes and the Thioesterase domain of FASN (TE-FASN) gene that may be related to the lipid profile. In the experiment, a total of 84 sheep from different genetic groups were used. For the evaluation of the polymorphism of the genes, PCR-Single Strand Conformation Polymorphism (SSCP) technique and subsequent sequencing were used. In DGAT-2 gene, four genotypes were identified with the presence of 6 polymorphisms, with two (c.229T> C; c.255T> C) that resulted into the exchange of phenylalanine by leucine. In FASN gene, two genotypes were identified. In TE-FASN gene, three genotypes and 17 polymorphisms were identified. DGAT-1 and SCD genes did not reveal the occurrence of polymorphism. There was difference in relation to C14: 0, C18: 0 fatty acids and Δ9-desaturase C18 for DGAT-2 gene and of C18: 2ω6t for TE-FASN. There were differences among the genetic groups for C10: 0, C12: 0, C17: 0, C18: 2ω6t, C18: 3ω3, C20: 2, total of ω3, ω3/ω6 and atherogenicity index. There is occurrence of polymorphism of DGAT-2 and TE-FASN genes and these should be further studied in sheep since they revealed influence of the genotypes on the fatty acid profile.


2000 ◽  
Vol 28 (6) ◽  
pp. 567-574 ◽  
Author(s):  
J. Ohlrogge ◽  
M. Pollard ◽  
X. Bao ◽  
M. Focke ◽  
T. Girke ◽  
...  

For over 25 years there has been uncertainty over the pathway from CO2, to acetyl-CoA in chloroplasts. On the one hand, free acetate is the most effective substrate for fatty acid synthesis by isolated chloroplasts, and free acetate concentrations reported in leaf tissue (0.1–1 mM) appear adequate to saturate fatty acid synthase. On the other hand, a clear mechanism to generate sufficient free acetate for fatty acid synthesis is not established and direct production of acetyl-CoA from pyruvate by a plastid pyruvate dehydrogenase seems a more simple and direct path. We have re-examined this question and attempted to distinguish between the alternatives. The kinetics of 13CO2 and 14CO2 movement into fatty acids and the absolute rate of fatty acid synthesis in leaves was determined in light and dark. Because administered 14C appears in fatty acids within < 2–3 min our results are inconsistent with a large pool of free acetate as an intermediate in leaf fatty acid synthesis. In addition, these studies provide an estimate of the turnover rate of fatty acid in leaves. Studies similar to the above are more complex in seeds, and some questions about the regulation of plant lipid metabolism seem difficult to solve using conventional biochemical or molecular approaches. For example, we have little understanding of why or how some seeds produce >50%, oil whereas other seeds store largely carbohydrate or protein. Major control over complex plant biochemical pathways may only become possible by understanding regulatory networks which provide ‘global’ control over these pathways. To begin to discover such networks and provide a broad analysis of gene expression in developing oilseeds, we have produced micro-arrays that display approx. 5000 seed-expressed Arabidopsis genes. Sensitivity of the arrays was 1–2 copies of mRNA/cell. The arrays have been hybridized with probes derived from seeds, leaves and roots, and analysis of expression ratios between the different tissues has allowed the tissue-specific expression patterns of many hundreds of genes to be described for the first time. Approx. 10% of the genes were expressed at ratios ≥ 10-fold higher in seeds than in leaves or roots. Included in this list are a large number of proteins of unknown function, and potential regulatory factors such as protein kinases, phosphatases and transcription factors. The arrays were also found to be useful for analysis of Brassica seeds.


2002 ◽  
Vol 66 (3) ◽  
pp. 613-621 ◽  
Author(s):  
Katsuya INAGAKI ◽  
Tsunehiro AKI ◽  
Yoshihiro FUKUDA ◽  
Seiji KAWAMOTO ◽  
Seiko SHIGETA ◽  
...  

2007 ◽  
Vol 51 (10) ◽  
pp. 3537-3545 ◽  
Author(s):  
Methee Chayakulkeeree ◽  
Thomas H. Rude ◽  
Dena L. Toffaletti ◽  
John R. Perfect

ABSTRACT Fatty acid synthase in the yeast Cryptococcus neoformans is composed of two subunits encoded by FAS1 and FAS2 genes. We inserted a copper-regulated promoter (P CTR4-2 ) to regulate FAS1 and FAS2 expression in Cryptococcus neoformans (strains P CTR4-2 /FAS1 and P CTR4-2 /FAS2, respectively). Both mutants showed growth rates similar to those of the wild type in a low-copper medium in which FAS1 and FAS2 were expressed, but even in the presence of exogenous fatty acids, strains were suppressed in growth under high-copper conditions. The treatment of C. neoformans with fluconazole was shown to have an increased inhibitory activity and even became fungicidal when either FAS1 or FAS2 expression was suppressed. Furthermore, a subinhibitory dose of fluconazole showed anticryptococcal activity in vitro in the presence of cerulenin, a fatty acid synthase inhibitor. In a murine model of pulmonary cryptococcosis, a tissue census of yeast cells in P CTR4-2 /FAS2 strain at day 7 of infection was significantly lower than that in mice treated with tetrathiomolybdate, a copper chelator (P < 0.05), and a yeast census of P CTR4-2 /FAS1 strain at day 14 of infection in the brain was lower in the presence of more copper. In fact, no positive cultures from the brain were detected in mice (with or without tetrathiomolybdate treatment) infected with the P CTR4-2 /FAS2 strain, which implies that this mutant did not reach the brain in mice. We conclude that both FAS1 and FAS2 in C. neoformans are essential for in vitro and in vivo growth in conditions with and without exogenous fatty acids and that FAS1 and FAS2 can potentially be fungicidal targets for C. neoformans with a potential for synergistic behavior with azoles.


Sign in / Sign up

Export Citation Format

Share Document