scholarly journals Identification and Expression of a Rat Fatty Acid Elongase Involved in the Biosynthesis of C18 Fatty Acids

2002 ◽  
Vol 66 (3) ◽  
pp. 613-621 ◽  
Author(s):  
Katsuya INAGAKI ◽  
Tsunehiro AKI ◽  
Yoshihiro FUKUDA ◽  
Seiji KAWAMOTO ◽  
Seiko SHIGETA ◽  
...  
2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1473-1473
Author(s):  
Bonnie Patchen ◽  
Jiayi Xu ◽  
Dana Hancock ◽  
Patricia Cassano

Abstract Objectives Cross-sectional studies have found positive associations of plasma omega-3 polyunsaturated fatty acids (N-3 PUFAs) and lung function parameters, including the forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC). We used Mendelian randomization (MR) to address potential limitations in previous findings, including residual confounding and reverse causality, and improve causal inference for the relationship of N-3 PUFAs on lung function. Methods We instrumented the N-3 PUFAs alpha-linolenic acid (ALA), eicosapentanoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) with genetic variants in the fatty acid desaturase (FADS1/FADS2) and fatty acid elongase (ELOVL2) genes. We performed two sample MR, using genome-wide association data for N-3 PUFAs in the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium and for FEV1 and FVC in the UK Biobank. We also performed multivariable MR (MVMR) including linoleic acid (LA), the main dietary N-6 PUFA, to account for shared genetic predictors. We used the Wald's ratio or inverse variance weighted method in all analyses. Results In univariable MR, ALA was negatively associated with FEV1 (−0.27 ± 0.13 SD/% total FA, P = 0.02), while EPA was positively associated with FEV1 (0.05 ± 0.02 SD/% total FA, P = 0.02). The DPA—FEV1 association was similar to EPA (P = 0.05). These results align with the opposing effects of FADS1/2 variants on ALA vs EPA and DPA. DHA was not associated with FEV1 and there were no statistically significant N-3 PUFA—FVC associations. Using GWAS estimates adjusted for correlated N3-PUFAs did not alter these results. In MVMR including LA, the ALA—FEV1 associations were strengthened (P = 0.007), while the EPA—and DPA—FEV1 associations were no longer statistically significant. Conclusions Our analyses suggest that higher ALA has a direct negative effect on lung function, while the positive effects of EPA and DPA may be through the balance of N-3 and N-6 PUFA metabolism. However, interpretation of MVRM findings when modeling metabolic pathways needs further consideration. Funding Sources This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health Training Program (T32) in Translational Nutrition Research at Cornell University.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yohei Ishibashi ◽  
Hatsumi Goda ◽  
Rie Hamaguchi ◽  
Keishi Sakaguchi ◽  
Takayoshi Sekiguchi ◽  
...  

AbstractThe demand for n-3 long-chain polyunsaturated fatty acids (n-3LC-PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), will exceed their supply in the near future, and a sustainable source of n-3LC-PUFAs is needed. Thraustochytrids are marine protists characterized by anaerobic biosynthesis of DHA via polyunsaturated fatty acid synthase (PUFA-S). Analysis of a homemade draft genome database suggested that Parietichytrium sp. lacks PUFA-S but possesses all fatty acid elongase (ELO) and desaturase (DES) genes required for DHA synthesis. The reverse genetic approach and a tracing experiment using stable isotope-labeled fatty acids revealed that the ELO/DES pathway is the only DHA synthesis pathway in Parietichytrium sp. Disruption of the C20 fatty acid ELO (C20ELO) and ∆4 fatty acid DES (∆4DES) genes with expression of ω3 fatty acid DES in this thraustochytrid allowed the production of EPA and n-3docosapentaenoic acid (n-3DPA), respectively, at the highest level among known microbial sources using fed-batch culture.


2000 ◽  
Vol 28 (6) ◽  
pp. 654-658 ◽  
Author(s):  
T. K. Zank ◽  
U. Zähringer ◽  
J. Lerchl ◽  
E. Heinz

In order to elucidate the biosynthesis of longchain polyunsaturated fatty acids (PUFAs) in plants we searched for a cDNA encoding a Δ6-specific PUFA elongase from Physcomitrella patens which is known to contain high proportions of arachidonic acid (20:4 Δ5,8,11,14). An EST clone from P. patens was identified by its low homology to the yeast gene ELO1, which is required for the elongation of medium-chain fatty acids. We functionally characterized this cDNA by heterologous expression in Saccharomyces cerevisiae grown in the presence of several fatty acids. Analysis of the fatty acid profile of the transgenic yeast revealed that the cDNA encodes a protein that leads to the elongation of the C18 Δ6-polyunsaturated fatty acids γ-linolenic acid (18:3 Δ6,9,12) and stearidonic acid (18:4 Δ6,9,12,15), which were recovered to 45–51% as their elongation products. In contrast, linoleic and α-linolenic acids were hardly elongated and we could not measure any elongation of saturated and mono-unsaturated fatty acids (including 18:1 Δ6), indicating that the elongase is highly specific for the polyunsaturated nature of the fatty acid acting as substrate.


2020 ◽  
Author(s):  
Yuri Hayashi ◽  
Misato Yamano ◽  
Nozomu Kono ◽  
Hiroyuki Arai ◽  
Yoko Fujiwara ◽  
...  

ABSTRACTPolyunsaturated fatty acids (PUFAs) of the n-6 and n-3 series cannot be synthesized in mammals and therefore are called essential fatty acids (EFAs). Mead acid (20:3n-9) is an unusual n-9 PUFA, endogenously synthesized from oleic acid (18:1n-9) in an EFA-deficient state. Although Elovl5, a fatty acid elongase, has long been known to selectively elongate C18 and C20 PUFAs, it can use 18:1n-9 as a substrate for the synthesis of Mead acid under C20 PUFA-deficient, but not-sufficient, conditions. We found, by an in vitro enzyme assay, that the microsomal fraction obtained from PUFA-deficient, but not -sufficient, cells showed significant Elovl5 activity toward 18:1n-9, with no effect on its constitutive activity toward 18:3n-6, implying that Elovl5 acquires the activity toward 18:1n-9 under the PUFA-deficient conditions at the enzyme level. Further biochemical analysis revealed that Elovl5 was phosphorylated in the C20 PUFA-supplemented cells, and that treatment with an inhibitor of glycogen synthase kinase 3 (GSK3) completely abolished the phosphorylation of Elovl5 and retained the Elovl5 activity toward 18:1n-9, even in the presence of C20 PUFA. Finally, mutation of putative phosphorylation sites (T281A/S283A/S285A) on Elovl5 did not decrease the activity of Elovl5 toward 18:1n-9 by supplementation with C20 PUFA, suggesting that the phosphorylation of Elovl5 contributed to a change in substrate preference. Thus, by changing its substrate specificity in an EFA-deficient state, Elovl5 is able to regulate the synthesis of Mead acid to maintain levels of long-chain PUFAs.


Author(s):  
Tegan M Haslam ◽  
Ljerka Kunst

Abstract Condensing enzymes catalyze the committed reaction of fatty acid elongation and determine the chain length of fatty acids accepted and produced by the elongation complex. While necessary for the elongation of very-long-chain fatty acids (VLCFAs), identified plant condensing enzymes cannot efficiently produce VLCFAs longer than 28 carbons, which are precursors for the most abundant cuticular waxes of most plant species that have been surveyed. The eceriferum2 (cer2) mutant of Arabidopsis thaliana has a severe wax-deficient phenotype and specifically lacks waxes longer than 28 carbons, but the CER2 protein does not share sequence similarity with condensing enzymes. Instead, CER2 is homologous to BAHD acyltransferases. Heterologous expression in yeast previously demonstrated that CER2, and a small clade of BAHD acyltransferases with high sequence identity to CER2, can extend the chain-length specificity of the condensing enzyme CER6. This biochemical function is distinct from that of the broader BAHD acyltransferase family. The product specificity and physiological functions of individual CER2-LIKE proteins are unique. Here, we demonstrate that CER2 physically interacts with the fatty acid elongase. We cloned chimeric CER2-LIKE proteins and expressed these in yeast cells to identify the features that define the substrate specificities of CER2-LIKEs. We generated homology-based structural models to compare CER2-LIKEs and BAHD acyltransferases. In addition, based on the current phylogenetic analysis of the CER2-LIKE clade, we describe two further Arabidopsis CER2-LIKE genes, CER2-LIKE3 and CER2-LIKE4. We used yeast expression and mutant analysis to characterize these genes. Collectively, these results expand our knowledge of the functions of CER2-LIKEs, the BAHD acyltransferase family and cuticular wax metabolism.


Sign in / Sign up

Export Citation Format

Share Document