scholarly journals The polymorphisms of genes associated with the profile of fatty acids of sheep

2019 ◽  
Vol 71 (1) ◽  
pp. 303-313 ◽  
Author(s):  
C. Esteves ◽  
K.G. Livramento ◽  
L.V. Paiva ◽  
A.P. Peconick ◽  
I.F.F. Garcia ◽  
...  

ABSTRACT The present study aimed to evaluate the occurrence of polymorphisms in Diacylglycerol acyltransferase (DGTA-1 and 2), Fatty acid synthase (FASN), Stearoyl-CoA desaturase (SCD) genes and the Thioesterase domain of FASN (TE-FASN) gene that may be related to the lipid profile. In the experiment, a total of 84 sheep from different genetic groups were used. For the evaluation of the polymorphism of the genes, PCR-Single Strand Conformation Polymorphism (SSCP) technique and subsequent sequencing were used. In DGAT-2 gene, four genotypes were identified with the presence of 6 polymorphisms, with two (c.229T> C; c.255T> C) that resulted into the exchange of phenylalanine by leucine. In FASN gene, two genotypes were identified. In TE-FASN gene, three genotypes and 17 polymorphisms were identified. DGAT-1 and SCD genes did not reveal the occurrence of polymorphism. There was difference in relation to C14: 0, C18: 0 fatty acids and Δ9-desaturase C18 for DGAT-2 gene and of C18: 2ω6t for TE-FASN. There were differences among the genetic groups for C10: 0, C12: 0, C17: 0, C18: 2ω6t, C18: 3ω3, C20: 2, total of ω3, ω3/ω6 and atherogenicity index. There is occurrence of polymorphism of DGAT-2 and TE-FASN genes and these should be further studied in sheep since they revealed influence of the genotypes on the fatty acid profile.

Author(s):  
E-Ming Rau ◽  
Inga Marie Aasen ◽  
Helga Ertesvåg

Abstract Thraustochytrids are oleaginous marine eukaryotic microbes currently used to produce the essential omega-3 fatty acid docosahexaenoic acid (DHA, C22:6 n-3). To improve the production of this essential fatty acid by strain engineering, it is important to deeply understand how thraustochytrids synthesize fatty acids. While DHA is synthesized by a dedicated enzyme complex, other fatty acids are probably synthesized by the fatty acid synthase, followed by desaturases and elongases. Which unsaturated fatty acids are produced differs between different thraustochytrid genera and species; for example, Aurantiochytrium sp. T66, but not Aurantiochytrium limacinum SR21, synthesizes palmitoleic acid (C16:1 n-7) and vaccenic acid (C18:1 n-7). How strain T66 can produce these fatty acids has not been known, because BLAST analyses suggest that strain T66 does not encode any Δ9-desaturase-like enzyme. However, it does encode one Δ12-desaturase-like enzyme. In this study, the latter enzyme was expressed in A. limacinum SR21, and both C16:1 n-7 and C18:1 n-7 could be detected in the transgenic cells. Our results show that this desaturase, annotated T66Des9, is a Δ9-desaturase accepting C16:0 as a substrate. Phylogenetic studies indicate that the corresponding gene probably has evolved from a Δ12-desaturase-encoding gene. This possibility has not been reported earlier and is important to consider when one tries to deduce the potential a given organism has for producing unsaturated fatty acids based on its genome sequence alone. Key points • In thraustochytrids, automatic gene annotation does not always explain the fatty acids produced. • T66Des9 is shown to synthesize palmitoleic acid (C16:1 n-7). • T66des9 has probably evolved from Δ12-desaturase-encoding genes.


2010 ◽  
Vol 109 (6) ◽  
pp. 1653-1661 ◽  
Author(s):  
Pawel Dobrzyn ◽  
Aleksandra Pyrkowska ◽  
Magdalena Jazurek ◽  
Konrad Szymanski ◽  
Jozef Langfort ◽  
...  

Stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, has recently been shown to be a critical control point in regulation of liver and skeletal muscle metabolism. Herein, we demonstrate that endurance training significantly increases both SCD1 mRNA and protein levels in the soleus muscle, whereas it does not affect SCD1 expression in the EDL muscle and liver. Desaturation index (18:1Δ9/18:0 ratio), an indirect indicator of SCD1 activity, was also significantly higher (3.6-fold) in soleus of trained rats compared with untrained animals. Consistent with greater SCD1 expression/activity, the contents of free fatty acids, diacylglycerol, and triglyceride were elevated in soleus of trained rats. However, training did not affect lipid concentration in EDL and liver. Additionally, endurance training activated the AMP-activated protein kinase pathway as well as increased peroxisome proliferator-activated receptor (PPAR)-δ and PPARα gene expression and activity in soleus and liver. Increased lipid accumulation in soleus was coupled with elevated protein levels of fatty acid synthase, mRNA levels of diacylglycerol acyltransferase and glycerol-3-phosphate transferase, as well as increased levels of proteins involved in fatty acid transport (fatty acid translocase/CD36, fatty acid transport protein 1). Interestingly, sterol regulatory element-binding protein (SREBP)-1c expression and SREBP-1 protein levels were not affected by exercise training. Together, the obtained data suggest that SCD1 upregulation plays an important role in adaptation of oxidative muscle to endurance training.


Author(s):  
Ahmed El-Sayed ◽  
Ahmed Ateya ◽  
Mohamed Hamed ◽  
Sherif Shoieb ◽  
Hussam Ibrahim ◽  
...  

Objective: To assess the mRNA level of acetyl CoA carboxylase alpha (ACACA), fatty acid synthase (FASN), and stearoyl-CoA desaturase (SCD) by means of real-time PCR in Barki sheep subjected to complete feed deprivation. Design: Controlled study. Animals: Seven healthy pregnant ewes. Procedures: Ewes were subjected to complete feed deprivation with ad libitum water for five consecutive days. Venous blood samples were collected from each ewe before (zero time) and on the fifth day post-deprivation of feed for measurement of the mRNA level of ACACA, FASN, and SCD and assessment of serum metabolic profile parameters. Results: On the fifth day post-fasting, the gene expression pattern of ACACA, FASN, SCD genes showed a significant (p < 0.05) down regulation in comparison with pre-deprivation of feed. There was a significant (p < 0.05) increase in the serum level of non-esterified fatty acids (NEFA), beta-hydroxyl buteric acid (BHBA), and triglycerides in pregnant ewes in the fifth day post-fasting in comparison with pre-deprivation of feed. On the other hand, there was a significant (p < 0.05) decrease in the level of glucose, cholesterol, and insulin in pregnant ewes in the fifth day post-fasting compared with pre-deprivation of feed. On histopathology, liver showed marked heptic steatosis in midzonal and periportal area, with formation of small fatty cysts in liver lobule. There was a positive correlation between leptin and insulin (r = 0.996; p < 0.01), BHB and leptin (r = 0.951; p < 0.05) and glucose and SCD (r = 1.0, p < 0.01). However, there was a negative correlation between FASN and NEFA (r = - 0.991; p < 0.05), FASN and leptin (r = -0.683; p < 0.05) and FASN and cholesterol (r = - 0.82; p < 0.05). Conclusion and clinical relevance: Pregnant Barki ewes can clinically tolerate complete feed deprivation for five days, with down regulation of ACACA, FASN, SCD genes and presence of marked metabolic changes. Therefore, metabolic monitoring is warranted to predict the early changes associated with feed deprivation under different stressful conditions.


2020 ◽  
Author(s):  
Michael Hulse ◽  
Sarah M Johnson ◽  
Sarah Boyle ◽  
Lisa Beatrice Caruso ◽  
Italo Tempera

Latent membrane protein 1 (LMP1) is the major transforming protein of Epstein-Barr virus (EBV) and is critical for EBV-induced B-cell transformation in vitro. Several B-cell malignancies are associated with latent LMP1-positive EBV infection, including Hodgkin’s and diffuse large B-cell lymphomas. We have previously reported that promotion of B cell proliferation by LMP1 coincided with an induction of aerobic glycolysis. To further examine LMP1-induced metabolic reprogramming in B cells, we ectopically expressed LMP1 in an EBV-negative Burkitt’s lymphoma (BL) cell line preceding a targeted metabolic analysis. This analysis revealed that the most significant LMP1-induced metabolic changes were to fatty acids. Significant changes to fatty acid levels were also found in primary B cells following EBV-mediated B-cell growth transformation. Ectopic expression of LMP1 and EBV-mediated B-cell growth transformation induced fatty acid synthase (FASN) and increased lipid droplet formation. FASN is a crucial lipogenic enzyme responsible for de novo biogenesis of fatty acids in transformed cells. Furthermore, inhibition of lipogenesis caused preferential killing of LMP1-expressing B cells and significantly hindered EBV immortalization of primary B-cells. Finally, our investigation also found that USP2a, a ubiquitin-specific protease, is significantly increased in LMP1-positive BL cells and mediates FASN stability. Our findings demonstrate that ectopic expression of LMP1 and EBV-mediated B-cell growth transformation leads to induction of FASN, fatty acids and lipid droplet formation, possibly pointing to a reliance on lipogenesis. Therefore, the use of lipogenesis inhibitors could potentially be used in the treatment of LMP1+ EBV associated malignancies by targeting a LMP1-specific dependency on lipogenesis. Importance Despite many attempts to develop novel therapies, EBV-specific therapies currently remain largely investigational and EBV-associated malignancies are often associated with a worse prognosis. Therefore, there is a clear demand for EBV-specific therapies for both prevention and treatment of viral-associated malignancies. Non-cancerous cells preferentially obtain fatty acids from dietary sources whereas cancer cells will often produce fatty acids themselves by de novo lipogenesis, often becoming dependent on the pathway for cell survival and proliferation. LMP1 and EBV-mediated B-cell growth transformation leads to induction of FASN, a key enzyme responsible for the catalysis of endogenous fatty acids. Preferential killing of LMP1-expressing B cells following inhibition of FASN suggests that targeting LMP-induced lipogenesis could be an effective strategy in treating LMP1-positive EBV-associated malignancies. Importantly, targeting unique metabolic perturbations induced by EBV could be a way to explicitly target EBV-positive malignancies and distinguish their treatment from EBV-negative counterparts.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 648 ◽  
Author(s):  
Felista W. Mwangi ◽  
Edward Charmley ◽  
Christopher P. Gardiner ◽  
Bunmi S. Malau-Aduli ◽  
Robert T. Kinobe ◽  
...  

A comprehensive review of the impact of tropical pasture grazing, nutritional supplementation during feedlot finishing and fat metabolism-related genes on beef cattle performance and meat-eating traits is presented. Grazing beef cattle on low quality tropical forages with less than 5.6% crude protein, 10% soluble starches and 55% digestibility experience liveweight loss. However, backgrounding beef cattle on high quality leguminous forages and feedlot finishing on high-energy diets increase meat flavour, tenderness and juiciness due to improved intramuscular fat deposition and enhanced mono- and polyunsaturated fatty acids. This paper also reviews the roles of stearoyl-CoA desaturase, fatty acid binding protein 4 and fatty acid synthase genes and correlations with meat traits. The review argues that backgrounding of beef cattle on Desmanthus, an environmentally well-adapted and vigorous tropical legume that can persistently survive under harsh tropical and subtropical conditions, has the potential to improve animal performance. It also identifies existing knowledge gaps and research opportunities in nutrition-genetics interactions aimed at a greater understanding of grazing nutrition, feedlot finishing performance, and carcass traits of northern Australian tropical beef cattle to enable red meat industry players to work on marbling, juiciness, tenderness and overall meat-eating characteristics.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 912 ◽  
Author(s):  
Robert Bodkowski ◽  
Katarzyna Czyż ◽  
Anna Wyrostek ◽  
Paulina Cholewińska ◽  
Ewa Sokoła-Wysoczańska ◽  
...  

The aim of the study was to examine the effect of dietary supplementation of isomerized poppy seed oil (IPO) enriched with conjugated dienes of linoleic acid (CLA) on cow and sheep milk parameters (fat content, fatty acid profile, Δ9-desaturase index, and atherogenic index). The process of poppy seed oil alkaline isomerization caused the formation of CLA isomers with cis-9,trans-11, trans-10,cis-12, and cis-11,trans-13 configurations in the amounts of 31.2%, 27.6%, and 4.1% of total fatty acids (FAs), respectively. Animal experiments were conducted on 16 Polish Holstein Friesian cows (control (CTRL) and experimental (EXP), n = 8/group) and 20 East Friesian Sheep (CTRL and EXP, n = 10/group). For four weeks, animals from EXP groups received the addition of IPO in the amount of 1% of dry matter. Milk was collected three times: on days 7, 14, and 30. Diet supplementation with IPO decrease milk fat content (p < 0.01). Milk fat from EXP groups had higher levels of polyunsaturated fatty acids, including FAs with beneficial biological properties, that is, CLA and TVA (p < 0.01), and lower levels of saturated fatty acids, particularly short- (p < 0.01) and medium-chain FAs (p < 0.05). The addition of IPO led to a decrease in the atherogenic index.


2020 ◽  
Vol 117 (38) ◽  
pp. 23557-23564
Author(s):  
Alex Ruppe ◽  
Kathryn Mains ◽  
Jerome M. Fox

Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) ofEscherichia coliand paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures—and helps explain—the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives—the total production, unsaturated fraction, and average length of fatty acids—than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.


2000 ◽  
Vol 28 (6) ◽  
pp. 567-574 ◽  
Author(s):  
J. Ohlrogge ◽  
M. Pollard ◽  
X. Bao ◽  
M. Focke ◽  
T. Girke ◽  
...  

For over 25 years there has been uncertainty over the pathway from CO2, to acetyl-CoA in chloroplasts. On the one hand, free acetate is the most effective substrate for fatty acid synthesis by isolated chloroplasts, and free acetate concentrations reported in leaf tissue (0.1–1 mM) appear adequate to saturate fatty acid synthase. On the other hand, a clear mechanism to generate sufficient free acetate for fatty acid synthesis is not established and direct production of acetyl-CoA from pyruvate by a plastid pyruvate dehydrogenase seems a more simple and direct path. We have re-examined this question and attempted to distinguish between the alternatives. The kinetics of 13CO2 and 14CO2 movement into fatty acids and the absolute rate of fatty acid synthesis in leaves was determined in light and dark. Because administered 14C appears in fatty acids within < 2–3 min our results are inconsistent with a large pool of free acetate as an intermediate in leaf fatty acid synthesis. In addition, these studies provide an estimate of the turnover rate of fatty acid in leaves. Studies similar to the above are more complex in seeds, and some questions about the regulation of plant lipid metabolism seem difficult to solve using conventional biochemical or molecular approaches. For example, we have little understanding of why or how some seeds produce >50%, oil whereas other seeds store largely carbohydrate or protein. Major control over complex plant biochemical pathways may only become possible by understanding regulatory networks which provide ‘global’ control over these pathways. To begin to discover such networks and provide a broad analysis of gene expression in developing oilseeds, we have produced micro-arrays that display approx. 5000 seed-expressed Arabidopsis genes. Sensitivity of the arrays was 1–2 copies of mRNA/cell. The arrays have been hybridized with probes derived from seeds, leaves and roots, and analysis of expression ratios between the different tissues has allowed the tissue-specific expression patterns of many hundreds of genes to be described for the first time. Approx. 10% of the genes were expressed at ratios ≥ 10-fold higher in seeds than in leaves or roots. Included in this list are a large number of proteins of unknown function, and potential regulatory factors such as protein kinases, phosphatases and transcription factors. The arrays were also found to be useful for analysis of Brassica seeds.


Sign in / Sign up

Export Citation Format

Share Document