scholarly journals Decrypting a cryptic allosteric pocket in H. pylori glutamate racemase

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pratik Rajesh Chheda ◽  
Grant T. Cooling ◽  
Sondra F. Dean ◽  
Jonah Propp ◽  
Kathryn F. Hobbs ◽  
...  

AbstractOne of our greatest challenges in drug design is targeting cryptic allosteric pockets in enzyme targets. Drug leads that do bind to these cryptic pockets are often discovered during HTS campaigns, and the mechanisms of action are rarely understood. Nevertheless, it is often the case that the allosteric pocket provides the best option for drug development against a given target. In the current studies we present a successful way forward in rationally exploiting the cryptic allosteric pocket of H. pylori glutamate racemase, an essential enzyme in this pathogen’s life cycle. A wide range of computational and experimental methods are employed in a workflow leading to the discovery of a series of natural product allosteric inhibitors which occupy the allosteric pocket of this essential racemase. The confluence of these studies reveals a fascinating source of the allosteric inhibition, which centers on the abolition of essential monomer-monomer coupled motion networks.

2018 ◽  
Author(s):  
Christine Moore Sheridan ◽  
Valentina E. Garcia ◽  
Vida Ahyong ◽  
Joseph L. DeRisi

AbstractThe continued specter of resistance to existing antimalarials necessitates the pursuit of novel targets and mechanisms of action for drug development. One class of promising targets consists of the 80S ribosome and its associated components comprising the parasite translational apparatus. Development of translation-targeting therapeutics requires a greater understanding of protein synthesis and its regulation in the malaria parasite. Research in this area has been limited by the lack of appropriate experimental methods, particularly a direct measure of parasite translation. We have recently developed and optimized the PfIVT assay, an in vitro method directly measuring translation in whole-cell extracts from the malaria parasite Plasmodium falciparum.Here, we present an extensive pharmacologic assessment of the PfIVT assay using a wide range of known inhibitors, demonstrating its utility for studying activity of both ribosomal and non-ribosomal elements directly involved in translation. We further demonstrate the superiority of this assay over a historically utilized indirect measure of translation, S35-radiolabel incorporation. Additionally, we utilize the PfIVT assay to investigate a panel of clinically approved antimalarial drugs, many with unknown or unclear mechanisms of action, and show that none inhibit translation, reaffirming Plasmodium translation to be a viable alternative drug target. Within this set, we unambiguously find that mefloquine lacks translation inhibition activity, despite having been recently mischaracterized as a ribosomal inhibitor. This work exploits a direct and reproducible assay for measuring P. falciparum translation, demonstrating its value in the continued study of protein synthesis in malaria and its inhibition as a drug target.Author summaryNovel antimalarial drugs are required to combat rising resistance to current therapies. The protein synthesis machinery of the malaria parasite Plasmodium falciparum is a promising unexploited target for antimalarial development, but its study has been hindered by use of indirect experimental methods which often produce misleading and inaccurate results. We have recently developed a direct method to investigate malaria protein synthesis utilizing whole-parasite extracts. In this work, we present an extensive characterization of the assay, using a panel of pharmacologic inhibitors with known mechanisms of action. We demonstrate the specificity of the assay in various stages of protein synthesis, as well as its improved accuracy and sensitivity in comparison to an indirect measure that has been the previous standard for the field. We further demonstrate that no current clinically available antimalarial drugs inhibit protein synthesis, emphasizing its potential as a target for drugs that will overcome existing resistance. Importantly, among the antimalarials tested was mefloquine, a widely used antimalarial that has recently been mischaracterized as an inhibitor protein synthesis. Our finding that mefloquine does not inhibit protein synthesis emphasizes the importance of using direct functional measurements when determining drug targets.


2009 ◽  
Vol 53 (8) ◽  
pp. 3331-3336 ◽  
Author(s):  
B. L. M. de Jonge ◽  
A. Kutschke ◽  
M. Uria-Nickelsen ◽  
H. D. Kamp ◽  
S. D. Mills

ABSTRACT Pyrazolopyrimidinediones are a novel series of compounds that inhibit growth of Helicobacter pylori specifically. Using a variety of methods, advanced analogues were shown to suppress the growth of H. pylori through the inhibition of glutamate racemase, an essential enzyme in peptidoglycan biosynthesis. The high degree of selectivity of the series for H. pylori makes these compounds attractive candidates for novel H. pylori-selective therapy.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


2019 ◽  
Vol 77 (9) ◽  
Author(s):  
Narges Dastmalchi ◽  
Seyed Mahdi Banan Khojasteh ◽  
Mirsaed Miri Nargesi ◽  
Reza Safaralizadeh

ABSTRACT Helicobacter pylori infection performs a key role in gastric tumorigenesis. Long non-coding RNAs (lncRNAs) have demonstrated a great potential to be regarded as effective malignancy biomarkers for various gastrointestinal diseases including gastric cancer (GC). The present review highlights the relationship between lncRNAs and H. pylori in GC. Several studies have examined not only the involvement of lncRNAs in H. pylori-associated GC progression but also their molecular mechanisms of action. Among the pertinent studies, some have addressed the effects of H. pylori infection on modulatory networks of lncRNAs, while others have evaluated the effects of changes in the expression level of lncRNAs in H. pylori-associated gastric diseases, especially GC. The relationship between lncRNAs and H. pylori was found to be modulated by various molecular pathways.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 60
Author(s):  
David A. Armstrong ◽  
Ai-Hua Jin ◽  
Nayara Braga Emidio ◽  
Richard J. Lewis ◽  
Paul F. Alewood ◽  
...  

Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded β-sheet, the GXIA backbone shows striking similarity to several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels. Supported by an amphipathic surface, the structural evidence suggests that GXIA is able to embed in the membrane and bind to the voltage sensor domain of a putative ion channel target.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1941
Author(s):  
Igor V. Popov ◽  
Ammar Algburi ◽  
Evgeniya V. Prazdnova ◽  
Maria S. Mazanko ◽  
Vladimir Elisashvili ◽  
...  

One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 489 ◽  
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Cristian Parra-Sepúlveda ◽  
Samuel Vega ◽  
Humberto Bernasconi ◽  
Víctor L. Campos ◽  
...  

Yeasts can adapt to a wide range of pH fluctuations (2 to 10), while Helicobacter pylori, a facultative intracellular bacterium, can adapt to a range from pH 6 to 8. This work analyzed if H. pylori J99 can protect itself from acidic pH by entering into Candida albicans ATCC 90028. Growth curves were determined for H. pylori and C. albicans at pH 3, 4, and 7. Both microorganisms were co-incubated at the same pH values, and the presence of intra-yeast bacteria was evaluated. Intra-yeast bacteria-like bodies were detected using wet mounting, and intra-yeast binding of anti-H. pylori antibodies was detected using immunofluorescence. The presence of the H. pylori rDNA 16S gene in total DNA from yeasts was demonstrated after PCR amplification. H. pylori showed larger death percentages at pH 3 and 4 than at pH 7. On the contrary, the viability of the yeast was not affected by any of the pHs evaluated. H. pylori entered into C. albicans at all the pH values assayed but to a greater extent at unfavorable pH values (pH 3 or 4, p = 0.014 and p = 0.001, respectively). In conclusion, it is possible to suggest that H. pylori can shelter itself within C. albicans under unfavorable pH conditions.


2021 ◽  
Vol 13 (9) ◽  
pp. 4886
Author(s):  
Katia Perini ◽  
Fabio Magrassi ◽  
Andrea Giachetta ◽  
Luca Moreschi ◽  
Michela Gallo ◽  
...  

Urban greening provides a wide range of ecosystem services to address the main challenges of urban areas, e.g., carbon sequestration, evapotranspiration and shade, thermal insulation, and pollution control. This study evaluates the environmental sustainability of a vertical greening system (VGS) built in 2014 in Italy, for which extensive monitoring activities were implemented. The life-cycle assessment methodology was applied to quantify the water–energy–climate nexus of the VGS for 1 m2 of the building’s wall surface. Six different scenarios were modelled according to three different end-of-life scenarios and two different useful lifetime scenarios (10 and 25 years). The environmental impact of global-warming potential and generated energy consumption during the use phase in the VGS scenarios were reduced by 56% in relation to the baseline scenario (wall without VGS), and showed improved environmental performance throughout the complete life cycle. However, the water-scarcity index (WSI) of the VGS scenarios increased by 42%. This study confirms that the installation of VGSs offers a relevant environmental benefit in terms of greenhouse-gas emissions and energy consumption; however, increased water consumption in the use phase may limit the large-scale application of VGSs.


Author(s):  
Blaine A. Mathison ◽  
Ninad Mehta ◽  
Marc Roger Couturier

Acanthacephala is a phylum of parasitic pseudocoelamates that infect a wide range of vertebrate and invertebrate hosts and can cause zoonotic infections in humans. The zoologic literature is quite rich and diverse, however the human-centric literature is sparse and sporadically reported over the past 70 years. Causal agents of acanthacephaliasis in humans are reviewed as well as their biology and life cycle. This review provides the first consolidated and summarized report of human cases of acanthacephaliasis based on English language publications, including epidemiology, clinical presentation, treatment, and diagnosis and identification.


2021 ◽  
pp. 53-56
Author(s):  

The main contours of the bearing surfaces of friction pairs with hydrodynamic lubrication are considered. Analysis of tabular data and graphs obtained by experimental methods made it possible to establish additional parameters of influence on the hydrodynamic characteristics of the friction process and the operational characteristics of tribological systems, in a wide range of load-speed modes. Keywords: sliding bearing, hydrodynamics, bushing, bearing surface, profile, circle, ellipse, wavy contour, wear. [email protected]


Sign in / Sign up

Export Citation Format

Share Document