scholarly journals The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease

Leukemia ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 110-120 ◽  
Author(s):  
P G Longo ◽  
L Laurenti ◽  
S Gobessi ◽  
A Petlickovski ◽  
M Pelosi ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Veronika Ecker ◽  
Martina Stumpf ◽  
Lisa Brandmeier ◽  
Tanja Neumayer ◽  
Lisa Pfeuffer ◽  
...  

AbstractCurrent therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5′-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy.


Author(s):  
Tongyu Tang ◽  
Guohua Jin ◽  
Ruihong Zhao ◽  
Jianguang Zhang ◽  
Tingting Cao

Background: We aimed to figure out the SSRP1's potential influence on the apoptosis and proliferation of gastric cancer (GC) cells and its regulatory mechanism. Methods: SSRP1 expression in GC cells and tissues was detected via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The interrelation between clinicopathological characteristics of GC patients and SSRP1 expression was analyzed via χ2 test, and the correlation between SSRP1 expression and overall survival rate was analyzed using Kaplan-Meier survival analysis. After knockdown of SSRP1 in AGS cells, the SSRP1 expression, colony formation ability, cell viability, cell cycle changes, apoptosis rate, and migration and invasion ability were detected through qRT-PCR, colony formation assay, CCK8 assay, flow cytometry and transwell test, respectively. Finally, the effects of down-regulation of SSRP1 on the expressions of phosphorylated-protein kinase B (p-AKT), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) were explored using Western blotting. Results: SSRP1 displayed a high expression in GC cells and tissues. SSRP1 expression was closely interrelated to the TNM stage, lymph node metastasis and tumor size. The survival rate of patients was markedly shorter in high expression group than the lower expression group. After the knockdown of SSRP1 in cells, the viability and colony formation ability of AGS cells were inhibited. In addition, cell ration in the G1 phase was increased, while that in the S phase declined, and the cell invasion and migration were obviously weakened. It was found from Western blotting that the knockdown of SSRP1 could evidently suppress the protein levels of Bcl-2 and p-AKT, but promote the protein expression of Bax, indicating that silencing SSRP1 can inhibit the proliferative capacity and increase the number of GC cells through incativating AKT signaling pathway. Conclusion: SSRP1 rose up in GC tissues and cells. Reduction of SSRP1 can inhibit the proliferative capacity and increase the number of GC cells through inactiving AKT signaling pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1121-1121
Author(s):  
Qingli Wu ◽  
Erik A. Ranheim

Abstract Binding of Wnt ligands to Frizzled (Fzd) family and LRP5/6 receptors results in stabilization of beta-catenin protein, its translocation to the nucleus, and in association with LEF/TCF family transcription factors, expression of target genes. This canonical Wnt signaling pathway plays a critical role in development and in the maintenance of tissue specific stem cell populations in the skin, gut, and bone marrow. Dysregulation of the beta-catenin signaling pathway has been described in numerous human malignancies, including chronic lymphocytic leukemia (CLL). Using the Eμ-TCL1 transgenic mouse model of CLL developed by C. Croce et al., we have examined expression of various components of the canonical Wnt pathway during lymphomagenesis by RT-PCR. The Eμ-TCL1 mouse spontaneously develops a hyperplasia of CD5+ B cells in the peripheral blood and peritoneum which progresses towards a monoclonal B cell leukemia/lymphoma with infiltration of spleen, bone marrow, and other organs. This provides the ability, largely lacking in human subjects, to analyze changes in gene expression during development of a lymphoid malignancy. We have FACS sorted normal CD5- B cells as well as CD5+ B cells from the hyperplastic, oligoclonal and malignant, monoclonal phases of leukemia development in Eμ-TCL1 mice and assessed their expression of various members of the Wnt, Fzd, LRP coreceptor, and LEF/TCF transcription factor families. Coreceptor LRP6 is expressed in all populations in approximately equal amounts as determined by quantitative RT-PCR. We find no expression of Fzd receptors 1, 2, 3, 4, or 9, nor Wnt4 or 5a in any population. We find mRNA for Fzd6 and LEF-1 are increased in hyperplastic and malignant CD5+ B cells in Eμ-TCL1 mice as compared to CD5- polyclonal B cells from the same animals. Of interest, both LEF-1 and Fzd6 expression also have been shown to be upregulated in human CLL B cells. To further assess Fzd6 expression during malignant transformation, we took advantage of the fact that only 3–5% of mouse B cells express lambda light chain. Therefore, large expansions of lambda expressing CD5+ B cells are most likely to be monoclonal in Eμ-TCL1 mice. In three separate mice, oligoclonal expansions of CD5+lambda- B cells coexisted with a clonal expansion of CD5+lambda+ cells, as confirmed by PCR analysis of germline immunoglobulin DNA. These two populations, as well as polyclonal CD5- B cells, were purified by FACS; and Fzd6 expression was quantified by real time RT-PCR. Fzd6 mRNA was increased in the oligoclonal CD5+ B cells by an average of 15.9 fold over the normal CD5- B cells (range 4.1-36.9). In the monoclonal lambda expressing subset, Fzd6 expression was increased 41.7 fold (range 23.7–68.3) over CD5- B cells, and increased over that seen in the oligoclonal CD5+ B cells of the same animal by 4.1 fold (range 1.9–5.7). These findings show that progressively increased expression of Fzd6 correlates with malignant transformation in B cell leukemogenesis in the Eμ-TCL1 mouse model and parallels the findings in fully transformed CLL B cells in humans. The functional consequences of enhanced Fzd6 and other components of the canonical Wnt signaling pathway in neoplastic B cells are currently being investigated.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5595-5595
Author(s):  
Ida Franiak-Pietryga ◽  
Kinga Ostrowska ◽  
Dietmar Appelhans ◽  
Henryk Maciejewski ◽  
Maria Bryszewska ◽  
...  

Abstract Introduction The nuclear factor kappa-light-chain enhancer of activated B-cells (NF-κB) signaling pathway is constitutively active in a variety of cancers, including chronic lymphocytic leukemia (CLL). The importance of this signaling pathway identifies it as a prime therapeutic target, however the complexity and potential side effects of inhibiting NF-κB have thus far made the clinical use of NF-κB inhibitors a relatively unexplored resource in this disease. There are a few combined therapies available for the treatment of CLL includes chemotherapy with agents such as chlorambucil, cyclophosphamide, fludarabine and bendamustine, along with immunotherapy including rituximab and alemtuzumab. None available therapy for CLL is curative. Nanotechnology, a new and promising field of scientific research, may be of use in medicine and the pharmaceutical industry. Dendrimers, nanoparticles of dendritic architecture, can interact effectively and specifically with cell components. We have already proved the influence of PPI-G4-OS-M3 dendrimers in cultures in vitro on CLL cells apoptosis.Herein, the objective was to evaluate how MEC-1 cells survival in vitro is affected by influence on NF-κB pathway by PPI-G4-OS-M3 dendrimer comparing to FA. Material and methods Dendrimer, in which approximately 35% of peripheral amino groups, was coated with maltotriose have been defined as PPI-G4-OS-M3 and was used in concentration of 8 mg/ml (the IC50 value for this dendrimer). 'OS' abbreviation stands for the open shell structure of carbohydrate-modified dendrimers. The molar mass of this PPI dendrimer was 31000 g/mol. Fludarabine (FA, Genzyme) in concentration of 1.6 µM, based on previous studies, was used. MEC-1 (DSMZ no. ACC 497) was used as a homogenous cell line with del(17p)(11q). In cultures the percentage of apoptotic cells was verified using AnnV and PI by means of flow cytometer. Cells predominated in the early stage of apoptosis.A microarray gene expression (Agilent SurePrint Technologies) was performed. Samples were hybridized to a whole human genome microarray 8x60K. Arrays were scanned on Agilent DNA Microarray Scanner. Data were deposited at Gene Expression Omnibus (GEO) (accession number GSE68094).Analysis of differential expression of genes was done with the limma method (Smyth, G. K., 2004) as implemented in R/Bioconductor software. We used the FDR multiple testing adjustment. We declared as differentially expressed the genes with FDR-adjusted p-value <0.1, which means that 10% of genes declared as DE are expected to be false positives. Results Dendrimer induced expression of REL, RELB and NFKBIB genes. In contrast, FA monotherapy resulted in significant differences in gene expression of cellular pathway-dependent transcription factor NF-kB. The most significant differences in the function of the FA and dendrimer are reflected in different levels of expression of three genes: NFKBIA, BCL3 and CHUK. Conclusion Constitutive NF-κB signaling contributes to cell growth, proliferation and survival. CLL cells have high basal levels of NF-κB compared with normal B cells. The activity is variable in CLL patients, correlates with in vitro cell survival, and importantly, increased levels of NF-κB activity enhanced resistance to the purine analogues FA (del17p). Therefore, disruption of NF-κB signaling and downstream target genes either promoted or repressed is an important strategy to pursue to disrupt drug resistance in CLL. The study indicates that the use of PPI dendrimers modified maltotriose may be the key to developing therapies deliberates CLL. The study was partially supported by Grant No. DEC-2011/01/B/NZ5/01371from the National Science Centre, Poland. Disclosures Robak: Janssen: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Pharmacyclics, LLC, an AbbVie Company: Consultancy, Honoraria, Research Funding.


2018 ◽  
Vol 22 ◽  
pp. 144-148 ◽  
Author(s):  
A. S. Matvieieva ◽  
L. M. Kovalevska ◽  
E. V. Kashuba

Aim. To illuminate the reason of inactivity of the TGFB-SMAD2/3 pathways in CLL cells. Methods. CLL cells were isolated from peripheral blood of CLL patients, using gradient centrifugation at the ficoll. Expression and cellular localization of SMAD2, 3 and 4 proteins were analyzed by fluorescence microscopy, using specific antibodies. Results. The SMAD2 protein was basically not expressed in CLL cells, in contrast to B cells, isolated from the peripheral blood of a healthy donor. Moreover, the SMAD3 and SMAD4 proteins were localized exclusively in the cytoplasm (a proportion of SMAD3 was detected in the membrane) of CLL cells. Conclusions. The TGFB-SMAD2/3 signaling pathway is not active in CLL cells. We have found that SMAD2 is not expressed. Also, the nuclear heterodimers that consisted of SMAD3 and SMAD4 proteins, were not detected. Keywords: chronic lymphocytic leukemia (CLA), acute myeloid leukemia (AML), peripheral blood B-cells, SMAD, the TGFB-SMAD2/3 signaling pathway.


2018 ◽  
Vol 40 (4) ◽  
pp. 261-267 ◽  
Author(s):  
K Tari ◽  
Z Shamsi ◽  
H Reza Ghafari ◽  
A Atashi ◽  
M Shahjahani ◽  
...  

Chronic lymphocytic leukemia (CLL) is increased proliferation of B-cells with peripheral blood and bone marrow involvement, which is usually observed in older people. Genetic mutations, epigenetic changes and miRs play a role in CLL pathogenesis. Del 11q, del l17q, del 6q, trisomy 12, p53 and IgVH mutations are the most important genetic changes in CLL. Deletion of miR-15a and miR-16a can increase bcl2 gene expression, miR-29 and miR-181 deletions decrease the expression of TCL1, and miR-146a deletion prevents tumor metastasis. Epigenetic changes such as hypo- and hypermethylation, ubiquitination, hypo- and hyperacetylation of gene promoters involved in CLL pathogenesis can also play a role in CLL. Expression of CD38 and ZAP70, presence or absence of mutation in IgVH and P53 mutation are among the factors involved in CLL prognosis. Use of monoclonal antibodies against surface markers of B-cells like anti-CD20 as well as tyrosine kinase inhibitors are the most important therapeutic approaches for CLL.


Sign in / Sign up

Export Citation Format

Share Document