scholarly journals Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Chunling Huang ◽  
Yuan Zhang ◽  
Darren J. Kelly ◽  
Christina Y. R. Tan ◽  
Anthony Gill ◽  
...  
Author(s):  
Liming Guo ◽  
Kuibi Tan ◽  
Qun Luo ◽  
Xu Bai

Diabetic nephropathy (DN) is the most common complication of diabetes and is prone to kidney failure. Dihydromyricetin (DHM) has been reported to have a variety of pharmacological activities. This study aims to explore the effect of DHM on DN and the underlying molecular mechanism. An in vivo DN rat model was established. The degree of renal interstitial fibrosis (RIF) was detected by hematoxylin-eosin (HE) staining, Masson's trichrome staining, and immunohistochemistry (IHC). In vitro, NRK-52E cells were divided into four groups: normal glucose (NG), high glucose (HG), HG+DHM, and HG+rapamycin (autophagy inhibitor). The levels of autophagy- and fibrosis-related proteins were analyzed by western blotting. The expression of miR-155-5p and phosphatase and tensin homolog deleted on chromosome ten (PTEN) and their relationship were assessed by quantitative reverse transcription (qRT)-PCR and dual luciferase reporter gene assay. Our results showed that RIF was increased in DN rat model and in HG-induced NRK-52E cells. DHM treatment attenuated the increased RIF and also increased autophagy. MiR-155-5p expression was increased, while PTEN expression was decreased in DN rat and cell model, and DHM reversed both effects. Dual luciferase assay showed that PTEN was the target gene of miR-155-5p. DHM inhibited HG-induced fibrosis and promoted autophagy by inhibiting miR-155-5p expression in NRK-52E cells. In addition, DHM promoted autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. In conclusion, DHM promotes autophagy and attenuates RIF by regulating the miR-155-5p/PTEN signaling and PI3K/AKT/mTOR signaling pathway in DN.


Author(s):  
Juan Jin ◽  
Jianguang Gong ◽  
Li Zhao ◽  
Yiwen Li ◽  
Qiang He

Background: Diabetic nephropathy (DN) is in the first place of the causes that lead to end-stage renal disease in the world. Thus, it is urgent to develop a novel diagnostic or therapeutic strategy that could stop the progression of diabetic nephropathy. Methods: RNA-sequencing was conducted in high glucose (HG)-treated MPC5 cells (podocytes). Cell morphology was examined under a light microscope. Upon high-glucose challenge, the effects of lncRNA Hoxb3os overexpression on MPC5 cells apoptosis, viability, autophagy and Akt-mTOR signaling were evaluated using flow cytometry, Cell Counting Kit-8, qRT-PCR, and Western blotting. TUNEL staining and ELISA were performed to confirm the establishment of DN model in db/db mice. Results: High-glucose exposure dramatically altered lncRNA expression profile in MPC5 cells (fold change>2), including 305 upregulated lncRNAs and 451 downregulated lncRNAs. LncRNA Hoxb3os expression was significantly reduced in the HG-induced podocyte damage model, as well as in the renal tissues from db/db mice with spontaneous DN. Overexpression of Hoxb3os significantly reduced the apoptosis rate and increased the viability of MPC5 cells under HG conditions. Further study revealed that exogenous Hoxb3os increased autophagy level in HG-exposed MPC5 cells via abrogating Akt-mTOR signaling pathway and that the process was possibly implicated in the upregulation of SIRT1. Conclusion: LncRNA Hoxb3os protected podocytes from HG-induced damage by regulating Akt-mTOR pathway and cell autophagy. Thus, lncRNA Hoxb3os appears as a potential biomarker in the diagnosis and treatment of DN in the future.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1286-1298
Author(s):  
Yi Ou ◽  
Wenjuan Zhang ◽  
Shaopeng Chen ◽  
Haihua Deng

Abstract Objective To investigate the effect of baicalin on diabetic nephropathy (DN) rats and podocytes and its mechanism. Methods The rat models with DN were established by high-fat and high-sugar diet and intraperitoneal injection of streptozotocin. The fasting blood glucose (FBG) and weight of rats in each group were measured at 0, 1, 2, 3, and 4 weeks. Their biochemical indicators, expression of inflammatory, and antioxidant factors were measured using an automatic biochemical analyzer together with ELISA. Hematoxylin–eosin staining and periodic acid-schiff staining were used to observe the morphological changes in the kidneys of rats in each group. Finally, the expressions of related molecules and PI3K/Akt/mTOR signaling pathway proteins in renal tissues and podocytes were examined by qRT-PCR and Western blot. Results Compared with the DN group, the FBG and weight, serum creatinine, blood urea nitrogen, total cholesterol, triacylglycerol, microalbumin, and albumin/creatinine ratio were all significantly decreased in the Baicalin treatment groups in a concentration-dependent manner. The levels of inflammatory factors in kidney tissue and podocytes were decreased. In addition, the activities of lactate dehydrogenase and malondialdehyde in tissue were decreased, while the superoxide dismutase was increased. The pathological sections showed that glomerular atrophy and glomerular basement membrane thickening caused by hyperglycemia were improved in the Baicalin treatment groups. Meanwhile, baicalin inhibited the downregulation of Nephrin and Podocin expressions and upregulation of Desmin expression caused by DN, and inhibited the expressions of p-PI3K, p-Akt, and p-mTOR proteins. Conclusion Baicalin slows down podocyte injury caused by DN by inhibiting the activity of PI3K/Akt/mTOR signaling pathway.


2020 ◽  
Author(s):  
Minfen Zhang ◽  
Hui Chen ◽  
Ping Qin ◽  
Tonghui Cai ◽  
Lingjun Li ◽  
...  

2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2020 ◽  
Vol 19 (3) ◽  
pp. 165-173
Author(s):  
Xiaowei Zhang ◽  
Yuanbo Liu

Primary Central Nervous System Lymphoma (PCNSL) is a rare invasive extranodal non- Hodgkin lymphoma, a vast majority of which is Diffuse Large B-Cell Lymphoma (DLBCL). Although high-dose methotrexate-based immunochemotherapy achieves a high remission rate, the risk of relapse and related death remains a crucial obstruction to long-term survival. Novel agents for the treatment of lymphatic malignancies have significantly broadened the horizons of therapeutic options for PCNSL. The PI3K/AKT/mTOR signaling pathway is one of the most important pathways for Bcell malignancy growth and survival. Novel therapies that target key components of this pathway have shown antitumor effects in many B-cell malignancies, including DLBCL. This review will discuss the aberrant status of the PI3K/AKT/mTOR signaling pathways in PCNSL and the application prospects of inhibitors in hopes of providing alternative clinical therapeutic strategies and improving prognosis.


Sign in / Sign up

Export Citation Format

Share Document