Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets

Nanoscale ◽  
2015 ◽  
Vol 7 (28) ◽  
pp. 11915-11921 ◽  
Author(s):  
Lingling Guo ◽  
Haoming Yan ◽  
Quentarius Moore ◽  
Michael Buettner ◽  
Jinhui Song ◽  
...  

Mechanical properties of Bi2Te3 2D nanosheets (5–14 QLs) were investigated and the Young's modulus (18.7 ± 7.0 GPa) was found to be much less than that of bulk Bi2Te3.

2020 ◽  
Vol 54 (29) ◽  
pp. 4575-4590 ◽  
Author(s):  
Amin Hamed Mashhadzadeh ◽  
Abdolhossein Fereidoon ◽  
Morteza Ghorbanzadeh Ahangari

In current work, we developed mechanical properties of PVC (polyvinyl chloride)/graphene nanocomposite theoretically and experimentally. In our theoretical model, a multi-scale finite element model was used to predict Young’s modulus of the stated nanocomposite. The molecular structure of pristine graphene was treated using the density functional theory (DFT) method. By assuming graphene as a space-frame structure that preserves the discrete nature of graphene, they were modeled by the use of three-dimensional elastic beam elements for the Carbon-Carbon covalent bonds and point mass elements for the atoms. Then interfacial van der Waals interaction that exists between PVC and graphene was modeled using the general form of Lennard–Jones potential and simulated by a nonlinear truss rod model. The Lennard–Jones parameters and van der Waals forces were determined versus separation distance for the stated nonlinear truss rod via the DFT method. Finally, we prepared PVC/graphene samples with different weight percentages of graphene nanoplatelets experimentally using the melt-mixing procedure. Our computational modeling demonstrated that the magnitudes of Young’s modulus PVC/graphene were close to the experimentally obtained results until 1 wt% with an average difference of about 25%. Finally, we justified the obtained mechanical results by investigating the morphology of experimental samples using Transmission electron microscopy (TEM) and Scanning Electron Microscopy (SEM) images.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 347-355
Author(s):  
Róbert Porjesz ◽  
Françoise Bergerat

Abstract Physical properties of in situ rock mass are usually estimated from results obtained through laboratory tests on intact rock samples because the access to in situ rock may be quite challenging. This approach however raises some questions concerning the number of samples needed for reliable result, the validity of the extrapolation of the parameters from centimetre scale to a large rock mass and finally the effect of discontinuities contained in the rock mass. An underground quarry in Bougival with easy access to metre-scale pillars and the possibility to collect large number of samples has been chosen to analyse the scale effect and the anisotropy of the Campanian chalk. Different experiments have been designed to determine the dynamic elastic properties (Young’s modulus and Poisson’s ratio) based on geophysical approaches: ultrasonic measurements on laboratory samples, and “hammer” seismic measurements in situ. The static Young’s modulus and Poisson’s ratio have been determined through uniaxial compression tests on centimetre core samples. Pillars with and without visible discontinuities, as well as with various overburden rock thicknesses, have been chosen in order to analyse the possible impact of different heterogeneities on the elastic properties. Core samples of intact chalk, with 40mm to 100mm diameters, have been studied in laboratory. The high dispersion observed on the different results suggests that if only a few tests are analysed, the conclusions may not be representative. A statistical approach is more appropriate to analyse the mechanical properties of the chalk. The dynamic Young’s Modulus and Poisson’s ratio calculated from laboratory samples (centimetres) and in situ rocks (about ten metres) do not reveal any clear impact of size on these elastic properties. The presence of discontinuities has a major impact on both the dynamic Young’s modulus and Poisson’s ratio. Decreasing values of these properties have been observed where discontinuities (fractures, flints) have been detected. Finally, the overburden rock thickness above the underground quarries (from 14m to 50m) seems to have no effect on the mechanical properties; the uncertainty of the measurements, partly due to the heterogeneity of the chalk mass, is likely to be more important than the effect of load on the pillars.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. C195-C208 ◽  
Author(s):  
Fei Gong ◽  
Bangrang Di ◽  
Jianxin Wei ◽  
Pinbo Ding ◽  
He Li ◽  
...  

Anisotropy in shales is an important issue in exploration and reservoir geophysics, and it has been proven extremely difficult to correlate anisotropy in natural shale by means of a single variable (in this case, clay content or compaction stress) because of the influence of multiple factors, such as water content, total organic carbon content, and complex mineral compositions. Thus, we used quartz, kaolinite, calcite, and kerogen extract as the primary materials to construct two sets of synthetic shale samples, each with a different clay content by weight and a different compaction stress. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry and saturated samples of our synthetic shales. The results reveal that the velocities decrease with clay content by weight and increase with compaction stress and that these changes are significant at low compaction stress. The velocity anisotropy of the samples increases with clay content and compaction stress due to the increasing alignment of the clay platelets. S-wave anisotropy is more sensitive to the clay content or compaction stress than P-wave anisotropy. The dynamic Young’s modulus [Formula: see text] of the samples decreases with clay content and increases with compaction stress, whereas Poisson’s ratio [Formula: see text] increases with clay content and decreases with compaction stress. Young’s modulus perpendicular to the symmetry axis is always larger than that parallel to the symmetry axis, but Poisson’s ratio perpendicular to the symmetry axis may be larger or smaller than that parallel to the symmetry axis, which indicates that mechanical properties have obvious anisotropic behavior. The elastic properties and anisotropy are also affected by fluids; the values of elastic and mechanical anisotropy parameters in saturated samples are significantly lower than those in dry samples.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3010
Author(s):  
Raphael Lamprecht ◽  
Florian Scheible ◽  
Marion Semmler ◽  
Alexander Sutor

Ultrasound elastography is a constantly developing imaging technique which is capable of displaying the elastic properties of tissue. The measured characteristics could help to refine physiological tissue models, but also indicate pathological changes. Therefore, elastography data give valuable insights into tissue properties. This paper presents an algorithm that measures the spatially resolved Young’s modulus of inhomogeneous gelatin phantoms using a CINE sequence of a quasi-static compression and a load cell measuring the compressing force. An optical flow algorithm evaluates the resulting images, the stresses and strains are computed, and, conclusively, the Young’s modulus and the Poisson’s ratio are calculated. The whole algorithm and its results are evaluated by a performance descriptor, which determines the subsequent calculation and gives the user a trustability index of the modulus estimation. The algorithm shows a good match between the mechanically measured modulus and the elastography result—more precisely, the relative error of the Young’s modulus estimation with a maximum error 35%. Therefore, this study presents a new algorithm that is capable of measuring the elastic properties of gelatin specimens in a quantitative way using only the image data. Further, the computation is monitored and evaluated by a performance descriptor, which measures the trustability of the results.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 968
Author(s):  
Fumitada Iguchi ◽  
Keisuke Hinata

The elastic properties of 0, 10, 15, and 20 mol% yttrium-doped barium zirconate (BZY0, BZY10, BZY15, and BZY20) at the operating temperatures of protonic ceramic fuel cells were evaluated. The proposed measurement method for low sinterability materials could accurately determine the sonic velocities of small-pellet-type samples, and the elastic properties were determined based on these velocities. The Young’s modulus of BZY10, BZY15, and BZY20 was 224, 218, and 209 GPa at 20 °C, respectively, and the values decreased as the yttrium concentration increased. At high temperatures (>20 °C), as the temperature increased, the Young’s and shear moduli decreased, whereas the bulk modulus and Poisson’s ratio increased. The Young’s and shear moduli varied nonlinearly with the temperature: The values decreased rapidly from 100 to 300 °C and gradually at temperatures beyond 400 °C. The Young’s modulus of BZY10, BZY15, and BZY20 was 137, 159, and 122 GPa at 500 °C, respectively, 30–40% smaller than the values at 20 °C. The influence of the temperature was larger than that of the change in the yttrium concentration.


Sign in / Sign up

Export Citation Format

Share Document