Effect of injection timing and EGR on engine-out-responses of a common-rail diesel engine fueled with neat biodiesel

RSC Advances ◽  
2015 ◽  
Vol 5 (116) ◽  
pp. 96080-96096 ◽  
Author(s):  
Y. H. Teoh ◽  
H. H. Masjuki ◽  
M. A. Kalam ◽  
H. G. How

This work attempts to reduce the emissions of BSNOx and smoke from the levels of fossil diesel by using palm methyl ester biodiesel. With PME fuel, engine operation at 30% EGR resulted in the optimum trade-off between BSNOx and smoke emissions.

2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5663 ◽  
Author(s):  
Mahantesh Marikatti ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
Y.H. Basavarajappa ◽  
Manzoore Elahi M Soudagar ◽  
...  

The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate.


Author(s):  
Kamran Poorghasemi ◽  
Fathollah Ommi ◽  
Vahid Esfahanian

In DI Diesel engines NO and Soot trade off is an important challenge for Engineers. In this paper, at first, multiple injection strategy will be introduced as a useful way to reduce both NO and Soot emissions simultaneously. Then the effect of injection pressure in post injection on the engine emissions will be studied. Investigations have been conducted on DI diesel engine. To evaluate the benefits of multiple injection strategies and to reveal combustion mechanism, modified three dimensional CFD code KIVA-3V was used. Results showed that using post injection with appropriate dwell between injection pulses can be effective in simultaneously reduction of emissions. Based on computation results, NO reduction formation mechanism is a single injection with retarded injection timing. It is shown that reduced soot formation is because of the fact that the soot producing rich regions at the fuel spray head are not replenished by new fuel when the injection is stopped and then restarted. Also increasing injection pressure in post injection will reduce the Soot emission dramatically while NO is in control and it is due to increasing fuel burning rate in post injection pulse.


Author(s):  
K Anand ◽  
R P Sharma ◽  
P S Mehta

Suitability of vegetable oil as an alternative to diesel fuel in compression ignition engines has become attractive, and research in this area has gained momentum because of concerns on energy security, high oil prices, and increased emphasis on clean environment. The experimental work reported here has been carried out on a turbocharged direct-injection multicylinder truck diesel engine using diesel fuel and jatropha methyl ester (JME)-diesel blends. The results of the experimental investigation indicate that an increase in JME quantity in the blend slightly advances the dynamic fuel injection timing and lowers the ignition delay compared with the diesel fuel. A maximum rise in peak pressure limited to 6.5 per cent is observed for fuel blends up to 40 per cent JME for part-load (up to about 50 per cent load) operations. However, for a higher-JME blend, the peak pressures decrease at higher loads remained within 4.5 per cent. With increasing proportion of JME in the blend, the peak pressure occurrence slightly advances and the maximum rate of pressure rise, combustion duration, and exhaust gas temperature decrease by 9 per cent, 15 per cent and 17 per cent respectively. Although the changes in brake thermal efficiencies for 20 per cent and 40 per cent JME blends compared with diesel fuel remain insignificant, the 60 per cent JME blend showed about 2.7 per cent improvement in the brake thermal efficiency. In general, it is observed that the overall performance and combustion characteristics of the engine do not alter significantly for 20 per cent and 40 per cent JME blends but show an improvement over diesel performance when fuelled with 60 per cent JME blend.


2013 ◽  
Vol 465-466 ◽  
pp. 322-326 ◽  
Author(s):  
M. Adlan Abdullah ◽  
Farid Nasir Ani ◽  
Masjuki Hassan

It is in the interest of proponents of biodiesel to increase the utilization of the renewable fuel. The similarities of the methyl ester properties to diesel fuel and its miscibility proved to be an attractive advantage. It is however generally accepted that there are some performance and emissions deficit when a diesel engine is operated with biodiesel. There are research efforts to improve the diesel engine design to optimize the combustion with biodiesel. Since the common rail engines operates on flexible injection strategies, there exist an opportunity to improve engine performance and offset the fuel economy deficit by means of optimizing the engine control strategies. This approach may prove to be more practical and easily implemented. This study investigated the effects of the fuel injection parameters - rail pressure, injection duration and injection timing - on a common rail passenger car engine in terms of the fuel economy. Palm oil based biodiesel up to 30% blend in diesel was used in this study. The end of injection, (EOI), was found to be the most important parameter for affecting fuel consumption and thermal efficiency.


Energy ◽  
2018 ◽  
Vol 149 ◽  
pp. 979-989 ◽  
Author(s):  
Jiaqiang E ◽  
MinhHieu Pham ◽  
Yuanwang Deng ◽  
Tuannghia Nguyen ◽  
VinhNguyen Duy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document