Hydrophobic myristic acid modified PAMAM dendrimers augment the delivery of tamoxifen to breast cancer cells

RSC Advances ◽  
2016 ◽  
Vol 6 (30) ◽  
pp. 24808-24819 ◽  
Author(s):  
Ishita Matai ◽  
P. Gopinath

In the present study, cationic generation 5 polyamido amine (G5 PAMAM) dendrimers were hydrophobically modified by grafting the surface with lipid-like myristic acid (My) tails to augment their potential as a drug delivery vector in vitro.

2020 ◽  
Vol 13 ◽  
Author(s):  
Selin Yılmaz ◽  
Çiğdem İçhedef ◽  
Kadriye Buşra Karatay ◽  
Serap Teksöz

Backgorund: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it’s aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were caharacterized by dynamic light scattering(DLS)and scanning electron microscopy(SEM), respectively. Radiolabeling yield of SPION-PLGAGEM nanoparticles were determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles were determined as 366.6 nm by DLS, while zeta potential was found as-29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16 % by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles were determined as 97.8±1.75 % via TLRC. Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, whilst incorporation rate was increased for both cell lines which external magnetic field application. Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and supermagnetic characteristics.


2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


2020 ◽  
Vol 31 (9) ◽  
pp. 4064-4071
Author(s):  
Iman Akbarzadeh ◽  
Mohammad Tavakkoli Yaraki ◽  
Saeedeh Ahmadi ◽  
Mohsen Chiani ◽  
Dariush Nourouzian

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Chandran Murugan ◽  
Kathirvel Rayappan ◽  
Ramar Thangam ◽  
Ramasamy Bhanumathi ◽  
Krishnamurthy Shanthi ◽  
...  

Abstract Combination therapy of multiple drugs through a single system is exhibiting high therapeutic effects. We investigate nanocarrier mediated inhibitory effects of topotecan (TPT) and quercetin (QT) on triple negative breast cancer (TNBC) (MDA-MB-231) and multi drug resistant (MDR) type breast cancer cells (MCF-7) with respect to cellular uptake efficiency and therapeutic mechanisms as in vitro and in vivo. The synthesized mesoporous silica nanoparticle (MSN) pores used for loading TPT; the outer of the nanoparticles was decorated with poly (acrylic acid) (PAA)-Chitosan (CS) as anionic inner-cationic outer layer respectively and conjugated with QT. Subsequently, grafting of arginine-glycine-aspartic acid (cRGD) peptide on the surface of nanocarrier (CPMSN) thwarted the uptake by normal cells, but facilitated their uptake in cancer cells through integrin receptor mediated endocytosis and the dissociation of nanocarriers due to the ability to degrade CS and PAA in acidic pH, which enhance the intracellular release of drugs. Subsequently, the released drugs induce remarkable molecular activation as well as structural changes in tumor cell endoplasmic reticulum, nucleus and mitochondria that can trigger cell death. The valuable CPMSNs may open up new avenues in developing targeted therapeutic strategies to treat cancer through serving as an effective drug delivery podium.


2021 ◽  
Author(s):  
Reza Davarnejad ◽  
Kiyana Layeghy ◽  
Meysam Soleymani ◽  
Arvin Ayazi

Abstract Quercetin, a natural polyphenolic compound, has attracted much attention due to its great therapeutic potential against various types of diseases. But clinical applications of quercetin are limited due to its poor aqueous solubility and low bioavailability. The main purpose of this research was to evaluate the therapeutic potential of quercetin-loaded Pluronic F127 (PF127)/Tween 80 mixed nanomicelles as a passive targeted drug delivery system for breast cancer therapy. To this end, quercetin-loaded mixed nanomicelles with different mass ratios of drug:PF127:Tween 80 were prepared by the thin-film hydration method. The highest drug loading and entrapment efficiency were obtained to be 2.3% and 98.0%, respectively, for mixed micelles with drug:PF127:Tween 80 ratio of 1:40:15. The physical interactions of quercetin with PF127 and Tween 80 at optimized ratio was investigated by XRD and FTIR analyses. The mean hydrodynamic size and surface charge of prepared nanomicelles, measured by DLS and zeta potential analyses, were 22.1 nm and -7.63 mV, respectively. The results of in-vitro drug release experiments showed that, the mixed micellar system has a prolong and sustained release behavior compared to the solution of free quercetin. Moreover, the in-vitro cytotoxicity studies of quercetin-loaded mixed nanomicelles on breast cancer cells (MCF-7) revealed that, the encapsulated drug have a lower IC50 value (8.9 µg/mL) compared to the free drug (49.2 µg/mL). Our results suggest that, quercetin-loaded mixed nanomicelles can be considered as a promising drug delivery system with prolonged release and potentiated cytotoxicity against breast cancer cells.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lisni Noraida Waruwu ◽  
Maria Bintang ◽  
Bambang Pontjo Priosoeryanto

Green tea (Camellia sinensis) is one of traditional plants that have the potential as an anticancer. The sample used in this research commercial green tea extract. The purpose of this study was to test the antiproliferation activity of green tea extract on breast cancer cell MCM-B2 in vitro. Green tea extract fractionated using three solvents, ie water, ethanol 70%, and n-hexane. Extract and fraction of green tea water have value Lethality Concentration 50 (LC50) more than 1000 ppm. The fraction of ethanol 70% and n-hexane had an LC50 value of 883.48 ppm and 600.56 ppm, respectively. The results of the phytochemical screening of green tea extract are flavonoids, tannins, and saponins, while the phytochemical screening results of n-hexane fraction are flavonoids and tannins. Antiproliferation activity was tested on breast cancer cells MCM-B2 and normal cells Vero by trypan blue staining method. The highest MCM-B2 cell inhibitory activity was achieved at a concentration of 13000 ppm green tea extract and 1000 ppm of n-hexane fraction, 59% and 59%, respectively. The extract and n-hexane fraction of green tea are not toxic to normal Vero cells characterized by not inhibiting normal cell proliferation. Keywords: antiproliferative, cancer cell MCM-B2, commercial green tea, cytotoxicity


Sign in / Sign up

Export Citation Format

Share Document