Fibre fortification of wheat bread: impact on mineral composition and bioaccessibility

2017 ◽  
Vol 8 (5) ◽  
pp. 1979-1987 ◽  
Author(s):  
Zita E. Martins ◽  
Edgar Pinto ◽  
Agostinho A. Almeida ◽  
Olívia Pinho ◽  
Isabel M. P. L. V. O. Ferreira

In this work, wheat bread was fortified with fibre enriched extracts recovered from agroindustry by-products, namely, elderberry skin, pulp and seeds (EE); orange peel (OE); pomegranate peel and interior membranes (PE); and spent yeast (YE).

2020 ◽  
Vol 11 (4) ◽  
pp. 3410-3419
Author(s):  
João P. Trigo ◽  
Elisabete M. C. Alexandre ◽  
Sara Silva ◽  
Eduardo Costa ◽  
Jorge A. Saraiva ◽  
...  

Extracts from fruit processing by-products usually present high amounts of bioactive compounds with several important activities such as antioxidant and antimicrobial capacities.


2019 ◽  
Vol 10 ◽  
Author(s):  
Vincenzo Cantatore ◽  
Pasquale Filannino ◽  
Giuseppe Gambacorta ◽  
Ilaria De Pasquale ◽  
Stefan Pan ◽  
...  

LWT ◽  
2019 ◽  
Vol 114 ◽  
pp. 108414 ◽  
Author(s):  
Aleksandra Torbica ◽  
Dubravka Škrobot ◽  
Elizabet Janić Hajnal ◽  
Miona Belović ◽  
Na Zhang

2019 ◽  
Vol 9 (24) ◽  
pp. 5475 ◽  
Author(s):  
Hajer Ben Hlima ◽  
Thouraya Bohli ◽  
Mariem Kraiem ◽  
Abdelmottaleb Ouederni ◽  
Lotfi Mellouli ◽  
...  

Biological control is one of the effective methods for managing plant diseases in food production and quality. In fact, there is a growing trend to find new bio-sources, such as marine algae and vegetal by-products. In this study, pomegranate (Punica granatum) peel (S1) and Spirulina platensis (S2) alone and in combinations, pomegranate peel/Spirulina: 25%/75% (S3) and 50%/50% (S4) were evaluated for antimycotoxigenic and antiphytopathogenic fungal properties. The chemical composition (moisture, dry matter, protein, lipid and ash) as well as total polyphenols, flavonoids and anthocyanins content were evaluated in the four extracts. Using agar diffusion and broth microdilution methods, the anti Fusarium oxysporum, Fusarium culmorum, Fusarium graminearum, Aspergillus niger and Alternaria alternata activities were measured and their correlations with phytochemical content were evaluated. Interestingly, combinations between Spirulina at 75% and pomegranate peel at 25% (S3) have a significant impact (p < 0.05) on the antifungal activity compared to S1, S2 and S4. These findings underlie the effectiveness of biocontrols over standard fungicides and imply that existing methods can be further improved by synergistic effects while maintaining food safety in an eco-friendly manner.


2005 ◽  
Vol 2005 ◽  
pp. 223-223
Author(s):  
R. Feizi ◽  
A. Ghodratnama ◽  
M. Zahedifar ◽  
M. Danesh Mesgaran ◽  
M. Raisianzadeh

Pomegranate by-products (peel and seed) contain about 40-45 percent of the fruit’s weight. The rind of the fruit (peel),when dried, is brown outside, yellow inside, hard, dry, brittle, in irregular fragments, inodorous, and with a very astringent, somewhat bitter taste. Analysis of pomegranate peel (PP) is shown that it contains 18.8 percent of tannin, 17.1 of mucilage, 10.8 of extractive matter, 30 of lignin, a trace of resin, and 29.9 of moisture. However, little information is available on PP nutritive value for ruminants. It is poor in protein and rich in tannins. Tannins components of the peel prevents its optimal use. The objective of this experiment was to evaluate the effect of different levels of urea (U) on in vitro gas production with and without added polyvinylpolypyrrolidone (PVP) to ensiled pomegranate peel (EPP).


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Bartkiene ◽  
Vadims Bartkevics ◽  
Iveta Pugajeva ◽  
Anastasija Borisova ◽  
Egle Zokaityte ◽  
...  

During plant-based drinks production a significant amount of valuable by-products (BPs) is obtained. The valorization of BPs is beneficial for both the environment and the food industry. The direct incorporation of the fermented and/or ultrasonicated almond, coconut, and oat drinks production BPs in other food products, such as wheat bread (WB) could lead to the better nutritional value as well as quality of WB. Therefore, in this study, various quantities (5, 10, 15, and 20%) of differently treated [ultrasonicated (37 kHz) or fermented with Lacticaseibacillus casei LUHS210] almond, coconut, and oat drinks preparation BPs were used in wheat bread (WB) formulations. Microbiological and other quality parameters (acidity, color, specific volume, porosity, moisture content, overall acceptability) as well as bread texture hardness during the storage and acrylamide content in the WB were evaluated. Among the fermented samples, 12-h-fermented almond and oat, as well as 24-h-fermented coconut drinks preparation BPs (pH values of 2.94, 2.41, and 4.50, respectively; total enterobacteria and mold/yeast were not found) were selected for WB production. In most cases, the dough and bread quality parameters were significantly (p ≤ 0.05) influenced by the BPs used, the treatment of the BPs, and the quantity of the BPs. The highest overall acceptability of the WB prepared with 20% fermented almond drink preparation by-product (AP), 15% fermented oat drink preparation by-product (OP), and 15% ultrasonicated OP was established. After 96 h of storage, the lowest hardness (on average, 1.2 mJ) of the breads prepared with 5% fermented AP, coconut drink preparation by-product (CP), and OP and ultrasonicated CP was found. The lowest content of acrylamide in the WB prepared with OP was found (on average, 14.7 μg/kg). Finally, 15% fermented OP could be safely used for WB preparation because the prepared bread showed high overall acceptability, as well as low acrylamide content.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2363
Author(s):  
Yasser S. Mostafa ◽  
Saad A. Alamri ◽  
Sulaiman A. Alrumman ◽  
Mohamed Hashem ◽  
Zakaria A. Baka

This study aimed to synthesize silver nanoparticles (AgNPs) by pomegranate and orange peel extracts using a low concentration of AgNO3 solution to controlearly blight of tomato caused by Alternaria solani. The pathogen was isolated from infected tomato plants growing in different areas of Saudi Arabia. The isolates of this pathogen were morphologically and molecularly identified. Extracts from peels of pomegranate and orange fruits effectively developed a simple, quick, eco-friendly and economical method through a synthesis of AgNPs as antifungal agents against A. solani. Phenolic content in the pomegranate peel extract was greater than orange peel extract. Phenolic compounds showed a variation of both peel extracts as identified and quantified by High-Performance Liquid Chromatography. The phenolic composition displayed variability as the pomegranate peel extract exhibited an exorbitant amount of Quercitrin (23.62 mg/g DW), while orange peel extract recorded a high amount of Chlorogenic acid (5.92 mg/g DW). Biosynthesized AgNPs were characterized using UV- visible spectroscopy which recorded an average wavelength of 437 nm and 450 nm for pomegranate and orange peels, respectively. Fourier-transform infrared spectroscopy exhibited 32x73.24, 2223.71, 2047.29 and 1972.46 cm−1, and 3260.70, 1634.62, 1376.62 and 1243.76 cm−1 for pomegranate and orange peels, respectively. Transmission electron microscopy showed spherical shape of nanoparticles. Zetasizer analysis presented negative charge values; −16.9 and −19.5 mV with average particle sizes 8 and 14 nm fin case of pomegranate and orange peels, respectively. In vitro, antifungal assay was done to estimate the possibility of biosynthesized AgNPs and crude extracts of fruit peels to reduce the mycelial growth of A. solani. AgNPs displayed more fungal mycelial inhibition than crude extracts of two peels and AgNO3. We recommend the use of AgNPs synthesized from fruit peels for controlling fungal plant pathogens and may be applied broadly and safely in place by using the chemical fungicides, which display high toxicity for humans.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5928
Author(s):  
Lucía Castro-Vázquez ◽  
María Victoria Lozano ◽  
Virginia Rodríguez-Robledo ◽  
Joaquín González-Fuentes ◽  
Pilar Marcos ◽  
...  

Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.


Sign in / Sign up

Export Citation Format

Share Document