Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon

Nanoscale ◽  
2017 ◽  
Vol 9 (44) ◽  
pp. 17593-17600 ◽  
Author(s):  
Min Wang ◽  
Xiangqian Fan ◽  
Lingxia Zhang ◽  
Jianjun Liu ◽  
Beizhou Wang ◽  
...  

The coexistence of N and O species makes an important contribution to the ultra-high CO2 adsorption performance of porous activated carbons.

2016 ◽  
Vol 4 (14) ◽  
pp. 5223-5234 ◽  
Author(s):  
Kaimin Li ◽  
Sicong Tian ◽  
Jianguo Jiang ◽  
Jiaming Wang ◽  
Xuejing Chen ◽  
...  

After carbonization and activation, pine cone shell-based activated carbons were used to adsorb CO2, and presenting a good adsorption performance.


2021 ◽  
Vol 60 (40) ◽  
pp. 14547-14563
Author(s):  
Kwang-Jun Ko ◽  
Seongmin Jin ◽  
Haeryeong Lee ◽  
Kyung-Min Kim ◽  
Masoud Mofarahi ◽  
...  

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 801
Author(s):  
Liu ◽  
Li ◽  
Dong ◽  
Li ◽  
Feng ◽  
...  

Focusing on the bottlenecks of traditional physical activation method for the preparation of activated carbons (ACs), we established a simple and scalable method to control the physicochemical structure of ACs and study their CO2 adsorption performance. The preparation is achieved by ammonia activation at different volume fractions of ammonia in the mixture (10%, 25%, 50%, 75%, and 100%) to introduce the nitrogen-containing functional groups and form the original pores and subsequent chemical vapor deposition (CVD) at different deposition times (30, 60, 90, and 120 min) to further adjust the pore structure. The nitrogen content of ACs-0.1/0.25/0.5/0.75/1 increases gradually from 2.11% to 8.84% with the increase of ammonia ratio in the mixture from 10% to 75% and then decreases to 3.02% in the process of pure ammonia activation (100%), during which the relative content of pyridinium nitrogen (N-6), pyrrolidine (N-5), and graphite nitrogen (N-Q) increase sequentially but nitrogen oxygen structure (N-O) increase continuously. In addition, ACs-0.5 and ACs-0.75, with a relatively high nitrogen content (6.37% and 8.84%) and SBET value (1048.65 m2/g and 814.36 m2/g), are selected as typical samples for subsequent CVD. In the stage of CVD, ACs-0.5-60 and ACs-0.75-90, with high SBET (1897.25 and 1971.57 m2/g) value and an appropriate pore-size distribution between 0.5 and 0.8 nm, can be obtained with the extension of deposition time from 60 to 90 min. The results of CO2 adsorption test indicate that an adsorption capacity of ACs-0.75-90, at 800 mmHg, is the largest (6.87 mmol/g) out of all the tested samples. In addition, the comparison of CO2 adsorption performance of tested samples with different nitrogen content and pore structure indicates that the effect of nitrogen content seems to be more pronounced in this work.


Author(s):  
Mohd Danish ◽  
Vijay Parthasarthy ◽  
Mohammed K. Al Mesfer

The rising CO2 concentration has prompted the quest of innovative tools to reduce its effect on the environment. A comparative adsorption study using sustainable low-cost date pits-derived activated carbon and molecular sieve has been carried out for CO2 separation. The adsorb ents were characterized for surface area and morphological properties. The outcomes of flow rate, temperature and initial adsorbate concentration on adsorption performance were examined. The process effectiveness was investigated by breakthrough time, adsorbate loading, efficiency, utilized bed height, mass transfer zone and utilization factor. The immensely steep adsorption response curves demonstrate acceptable utilization of adsorbent capability under breakthrough condition. The adsorbate loading 73.08 mg/g is achieved with an 0.938 column efficiency for developed porous activated carbon at 298 K. The reduced 1.20 cm length of mass transfer zone with enhanced capacity utilization factor equal 0.97 at 298 K with Cin = 5% signifies better adsorption performance for date pits-derived adsorbent. The findings recommend that produced activated carbon is greatly promising to adsorb CO2 in fixed bed column under continuous mode.


2021 ◽  
Author(s):  
Benadict Joseph Xavier ◽  
Christy Ezhilarasi J ◽  
Sea-Fue Wang ◽  
Elanthamilan Elaiyappillai ◽  
Sriram Balasubramanian ◽  
...  

State-of-the-art, electrochemical applications recently employ various activated carbons combined with transition metal oxides as electrode materials; exhibit superior conductivity and tailored porosity to offer both rapid electron transfer. In this...


Fuel ◽  
2019 ◽  
Vol 238 ◽  
pp. 232-239 ◽  
Author(s):  
Dawei Li ◽  
Jiaojiao Zhou ◽  
Yu Wang ◽  
Yuanyu Tian ◽  
Ling Wei ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64704-64710 ◽  
Author(s):  
Guofu Ma ◽  
Dongyang Guo ◽  
Kanjun Sun ◽  
Hui Peng ◽  
Qian Yang ◽  
...  

Cotton-based porous activated carbons (CACs) are prepared through a simple chemical activation method using cotton fiber as carbon source and ZnCl2 as activating agent.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 201
Author(s):  
Chaiyot Tangsathitkulchai ◽  
Suravit Naksusuk ◽  
Atichat Wongkoblap ◽  
Poomiwat Phadungbut ◽  
Prapassorn Borisut

The equilibrium and kinetics of CO2 adsorption at 273 K by coconut-shell activated carbon impregnated with sodium hydroxide (NaOH) was investigated. Based on nitrogen adsorption isotherms, porous properties of the tested activated carbons decreased with the increase of NaOH loading, with the decrease resulting primarily from the reduction of pore space available for nitrogen adsorption. Equilibrium isotherms of CO2 adsorption by activated carbons impregnated with NaOH at 273 K and the pressure up to 100 kPa displayed an initial part of Type I isotherm with most adsorption taking place in micropores in the range of 0.7–0.9 nm by pore-filling mechanisms. The amount of CO2 adsorbed increased with the increase of NaOH loading and passed through a maximum at the optimum NaOH loading of 180 mg/g. The CO2 isotherm data were best fitted with the three-parameter Sips equation, followed by Freundlich and Langmuir equations. The pore diffusion model, characterized by the effective pore diffusivity (De), could well describe the adsorption kinetics of CO2 in activated carbons impregnated with NaOH. The variation of De with the amount of CO2 adsorbed showed three consecutive regions, consisting of a rapid decrease of De for CO2 loading less than 40 mg/g, a relatively constant value of De for the CO2 loading of 40–80 mg/g and a slow decrease of De for the CO2 loading of 80–200 mg/g. The maximum De occurred at the optimum NaOH loading of 180 mg/g, in line with the equilibrium adsorption results. The values of De varied from 1.1 × 10−9 to 5.5 × 10−9 m2/s, which are about four orders of magnitude smaller than the molecular diffusion of CO2 in air. An empirical correlation was developed for predicting the effective pore diffusivity with the amount of CO2 adsorbed and NaOH loading.


Author(s):  
N.Z. Zabi ◽  
W.N. Wan Ibrahim ◽  
N.S. Mohammad Hanapi ◽  
N. Mat Hadzir

This paper aims to review recent studies in preparing activated carbons from different types of agricultural wastes in Malaysia and how it can help Malaysia manage agricultural waste. It can be seen that most biomasses can be used as precursors to produce activated carbon for a wide range of pollutants and this adsorbent can be modified to optimally function depending on the types of pollutants. Under optimum dosages, modification through chemical activation using acidic, basic, or drying agents has significant effects on the selectivity of the analyte adsorption. The acidic activating agent causes the activated carbon to have negatively charged acid groups which enable it to adsorb cationic adsorbate while the basic activating agent causes the adsorbent to have a positive surface charge and enable it to adsorb anionic adsorbate.


Sign in / Sign up

Export Citation Format

Share Document