Drug induced self-assembly of triblock copolymers into polymersomes for the synergistic dual-drug delivery of platinum drugs and paclitaxel

2017 ◽  
Vol 8 (40) ◽  
pp. 6289-6299 ◽  
Author(s):  
Manuela Callari ◽  
Sandy Wong ◽  
Hongxu Lu ◽  
Janice Aldrich-Wright ◽  
Paul de Souza ◽  
...  

Co-delivery of two drugs in one nanoparticle is increasingly used to overcome, for example, multi-drug resistance in cancer therapy and therefore suitable drug carriers need to be developed.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1092
Author(s):  
Dandan Zhu ◽  
Huanle Zhang ◽  
Yuanzheng Huang ◽  
Baoping Lian ◽  
Chi Ma ◽  
...  

Despite being a mainstay of clinical cancer treatment, chemotherapy is limited by its severe side effects and inherent or acquired drug resistance. Nanotechnology-based drug-delivery systems are widely expected to bring new hope for cancer therapy. These systems exploit the ability of nanomaterials to accumulate and deliver anticancer drugs at the tumor site via the enhanced permeability and retention effect. Here, we established a novel drug-delivery nanosystem based on amphiphilic peptide dendrimers (AmPDs) composed of a hydrophobic alkyl chain and a hydrophilic polylysine dendron with different generations (AmPD KK2 and AmPD KK2K4). These AmPDs assembled into nanoassemblies for efficient encapsulation of the anti-cancer drug doxorubicin (DOX). The AmPDs/DOX nanoformulations improved the intracellular uptake and accumulation of DOX in drug-resistant breast cancer cells and increased permeation in 3D multicellular tumor spheroids in comparison with free DOX. Thus, they exerted effective anticancer activity while circumventing drug resistance in 2D and 3D breast cancer models. Interestingly, AmPD KK2 bearing a smaller peptide dendron encapsulated DOX to form more stable nanoparticles than AmPD KK2K4 bearing a larger peptide dendron, resulting in better cellular uptake, penetration, and anti-proliferative activity. This may be because AmPD KK2 maintains a better balance between hydrophobicity and hydrophilicity to achieve optimal self-assembly, thereby facilitating more stable drug encapsulation and efficient drug release. Together, our study provides a promising perspective on the design of the safe and efficient cancer drug-delivery nanosystems based on the self-assembling amphiphilic peptide dendrimer.


2005 ◽  
Vol 4 (4) ◽  
pp. 363-374 ◽  
Author(s):  
Jaspreet K. Vasir ◽  
Vinod Labhasetwar

Chemotherapy has been the main modality of treatment for cancer patients; however, its success rate remains low, primarily due to limited accessibility of drugs to the tumor tissue, their intolerable toxicity, development of multi-drug resistance, and the dynamic heterogeneous biology of the growing tumors. Better understanding of tumor biology in recent years and new targeted drug delivery approaches that are being explored using different nanosystems and bioconjugates provide optimism in developing successful cancer therapy. This article reviews the possibilities and challenges for targeted drug delivery in cancer therapy.


2015 ◽  
Vol 3 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Wei Scarano ◽  
Paul de Souza ◽  
Martina H. Stenzel

Combinational chemotherapy is often used to prevent drug induced resistance in cancer.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107606-107612 ◽  
Author(s):  
Zhuli Huang ◽  
Xuan Xie ◽  
Jean Felix Mukerabigwi ◽  
Chang Wang ◽  
Shufang Wang ◽  
...  

A new type of targeted dual drug delivery system was designed and possesses outstanding advantages over ordinary systems, proving effective against MDR cancer cells.


Author(s):  
Peng Xie ◽  
Yushu Wang ◽  
Dengshuai Wei ◽  
Lingpu Zhang ◽  
Bin Zhang ◽  
...  

The mechanisms of chemoresistance and nanoparticle-based drug delivery systems for platinum drugs were detailed summarized in this review. The current combination therapy provided an effective strategy to overcome the platinum drug resistance.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24142-24153
Author(s):  
Andreea S. Voda ◽  
Kevin Magniez ◽  
Nisa V. Salim ◽  
Cynthia Wong ◽  
Qipeng Guo

We report for the first time the use of Nα-Boc-l-tryptophan for the synthesis of amphiphilic BAB triblock copolymers for potential drug delivery applications.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


2019 ◽  
pp. 1-6 ◽  
Author(s):  
HARISH KADKOL ◽  
VIKAS JAIN ◽  
AMIT PATIL*

Author(s):  
Muddukrishnaiah K.

Due to drug resistance, lack of cancer cell selectivity, and solubility, conventional cancer treatments lose their therapeutic uses, and as such, new therapeutic agents need to be developed. Nanomaterials and peptides are increasingly being used in the fields of cancer diagnosis, biomarker discovery due to their therapeutic values and novel way of targeting and curing the disease. Synergism among the peptide-conjugated nanoparticles is an exhilarating group of materials, not only sharing the benefits of conventional nanomedicine, but also possessing the unique properties of excellent biocompatibility, biodegradability, versatile sensitivity, specific biological purpose, and synthetic feasibility. These virtues inspired by the scientists and have taken advantage in the peptide-conjugated nano drugs for the accurate delivery of drugs reliably to the site of the lesion. This chapter offers a summary of emerging technologies that have recently been developed in the broad field of peptide-conjugated nanoparticles and offers guidance for targeted drug delivery and cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document