scholarly journals Simultaneously improved electrical properties of crystalline YbAl3 thin films prepared by co-sputtering technique

RSC Advances ◽  
2017 ◽  
Vol 7 (28) ◽  
pp. 17271-17278
Author(s):  
Ran-Ran Li ◽  
Dan-Qi He ◽  
Xin Mu ◽  
Hong-Yu Zhou ◽  
Ping Wei ◽  
...  

Crystalline and stoichiometric YbAl3 thin films with high electrical conductivity and high power factors were prepared by a co-sputtering technique and subsequent annealing treatment.

2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 76783-76787 ◽  
Author(s):  
H. L. Wang ◽  
X. K. Ning ◽  
Z. J. Wang

Au–LaNiO3 (Au–LNO) nanocomposite films with 3.84 at% Au were firstly fabricated by one-step chemical solution deposition (CSD), and their electrical properties were investigated.


ACS Nano ◽  
2009 ◽  
Vol 3 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
Yude Wang ◽  
Torsten Brezesinski ◽  
Markus Antonietti ◽  
Bernd Smarsly

2002 ◽  
Vol 750 ◽  
Author(s):  
Yoshifumi Aoi ◽  
Kojiro Ono ◽  
Kunio Sakurada ◽  
Eiji Kamijo

ABSTRACTAmorphous CNx thin films were deposited by pulsed laser deposition (PLD) combined with a nitrogen rf radical beam source which supplies active nitrogen species to the growing film surface. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), Raman scattering, and Fourier transform infrared (FTIR) spectroscopy. Nitrogen content of the deposited films increased with increasing rf input power and N2 pressure in the PLD chamber. The maximum N/C ratio 0.23 was obtained at 400 W of rf input power and 1.3 Pa. XPS N 1s spectra shows the existence of several bonding structures in the deposited films. Electrical properties of the deposited films were investigated. The electrical conductivity decreased with increasing N/C atomic ratio. Temperature dependence of electrical conductivity measurements indicated that electronic conduction occurred by variable-range hopping between p electron localized states.


Author(s):  
K. L. Levine ◽  
D. V. Ryabokon ◽  
S. D. Khanin ◽  
R. V. Gelamo ◽  
N. A. Nikonorova

The paper studies multilayer graphenes in the form of free-standing films. The authors provide data about the morphology and electrical properties of films treated with plasma of various chemical composition. It is shown that it is possible to control the electrical properties of the surface and electron work function without significantly affecting its morphology. The obtained samples, combining mechanical flexibility with unreactiveness and high electrical conductivity, are promising for application in flexible charge storage devices.


2007 ◽  
Vol 352 ◽  
pp. 315-318 ◽  
Author(s):  
Akihiko Ito ◽  
Hiroshi Masumoto ◽  
Takashi Goto

Epitaxial BaRuO3 (BRO) and CaRuO3 (CRO) thin films were prepared on (001), (110) and (111) SrTiO3 (STO) single-crystal substrates by laser ablation, and their microstructures and anisotropy of electrical conductivity were investigated. The (205) (104), (110) and (009) oriented BRO thin films, and (001), (110) and (110) oriented CRO thin films were grown epitaxially on (001), (110) and (111) STO substrates with in-plain orientation, respectively. The (009) BRO thin film and (001) CRO thin film has a flat surface result from a good lattice matching to STO substrates. The (205) (104) BRO thin film and (111) CRO thin film exhibited orthogonal- and hexagonal-shaped texture, respectively. The (110) BRO thin film and (110) CRO thin film showed an island growth due to (110) surface feature of cubic perovskite structure. Epitaxial BRO and CRO thin films have a high electrical conductivity with a metallic conduction, the (111) CRO thin films exhibited the highest conductivity of 1.4×105 S·m-1.


Sign in / Sign up

Export Citation Format

Share Document