scholarly journals Size dependent surface charge properties of silica nano-channels: double layer overlap and inlet/outlet effects

2018 ◽  
Vol 20 (24) ◽  
pp. 16719-16728 ◽  
Author(s):  
Tumcan Sen ◽  
Murat Barisik

A new empirical model extends the existing analytical solution to calculate a nano-channel's charge as a function of channel height and length.

SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 84-101 ◽  
Author(s):  
Maxim P. Yutkin ◽  
Himanshu Mishra ◽  
Tadeusz W. Patzek ◽  
John Lee ◽  
Clayton J. Radke

Summary Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of calcite bulk and surface equilibria draws several important inferences about the proposed LSW oil-recovery mechanisms. Diffuse double-layer expansion (DLE) is impossible for brine ionic strength greater than 0.1 molar. Because of rapid rock/brine equilibration, the dissolution mechanism for releasing adhered oil is eliminated. Also, fines mobilization and concomitant oil release cannot occur because there are few loose fines and clays in a majority of carbonates. LSW cannot be a low-interfacial-tension alkaline flood because carbonate dissolution exhausts all injected base near the wellbore and lowers pH to that set by the rock and by formation CO2. In spite of diffuse double-layer collapse in carbonate reservoirs, surface ion-exchange oil release remains feasible, but unproved.


2000 ◽  
Vol 658 ◽  
Author(s):  
Gregory J. Moore ◽  
Dominique Guyomard ◽  
Scott H. Elder

ABSTRACTA fundamental study of the Li insertion behavior of a series of materials consisting of a TiO2 core having MoO3 on the surface has been carried out in order to determine the influence of the shell. These TiO2-(MoO3)z materials, where (z) denotes the fraction of coverage from a partial to a double layer, range in diameter from 40-100 Å. Calculations have been done on their theoretical lithium capacity using a maximum of Li0.5TiO2 for the core, and Li1.5MoO3 at the TiO2/MoO3 interface, and they have been compared to that found experimentally. The reversible Li-insertion capacity was shown to increase from 0.34 per Ti for the pure TiO2 sample, to 0.91 Li per transition metal when the MoO3 coverage increased to one monolayer. There was only one plateau observed in the electrochemical scans for the samples showing that they function as a single-phase material making them interesting for electrodes. The redox voltage of the TiO2/Li0.5TiO2 biphasic transformation increased 60 mV from the pure TiO2 to the sample containing one monolayer of MoO3. This effect was interpreted as due to a change in TiO2 surface charge coming from an inductive effect of Ti-O-Mo bonds.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1655-1658
Author(s):  
YONGHAO ZHANG ◽  
XIAO-JUN GU ◽  
ROBERT W. BARBER ◽  
DAVID R. EMERSON

Electro-osmotic flow can be used as an efficient pumping mechanism in microfluidic devices. For this type of flow, frictional losses at the entrance and exit can induce an adverse longitudinal pressure distribution that can lead to dispersive effects. The present study describes a numerical investigation of the influence of the electric double layer on the induced pressure field and the flow development length. The induced pressure gradient is affected by the volumetric flow rate, fluid viscosity and the channel height. When the electric double layer is small, the development length remains constant at 0.57 of the channel height but decreases as the double layer grows in thickness.


Author(s):  
Ananthanarayanan Veeraragavan ◽  
Christopher P. Cadou

A two-dimensional model for heat transfer in reacting channel flow is developed along with an analytical solution that relates the temperature field in the channel to the flow Pe number. The solution is derived from first principles by modeling the flame as a volumetric heat source and by applying “jump conditions” across the flame. The model explores the role of heat recirculation via the channel’s walls by accounting for the thermal coupling between the wall and the gas. The uniqueness of the model lies in that it is developed by simultaneously solving the two dimensional temperature fields in both the wall and structure analytically. The solution is obtained using separation of variables in the streamwise (x) and the transverse (y) direction. Thermal coupling between the wall and gas is achieved by requiring that the temperature and heat flux match at the interface. The outer wall boundary can be either adiabatic or have a convective heat loss based on Newton’s law of cooling. The resulting solution is a Fourier series (for both wall and gas temperature fields) which depends on the flow Pe and the outer wall boundary condition. This simple model and the resulting analytical solution provide an extremely computationally efficient tool for exploring the effects of varying channel height and gas velocity on the temperature distribution associated with reacting (combusting) flow a channel. Understanding these tradeoffs is important for developing miniaturized, combustion-based power sources.


1973 ◽  
Vol 61 (5) ◽  
pp. 655-668 ◽  
Author(s):  
Kung-Ming Jan ◽  
Shu Chien

The effects of ionic strength and cationic valency of the fluid medium on the surface potential and dextran-induced aggregation of red blood cells (RBC's) were investigated. The zeta potential was calculated from cell mobility in a microelectrophoresis apparatus; the degree of aggregation of normal and neuraminidase-treated RBC's in dextrans (Dx 40 and Dx 80) was quantified by microscopic observation, measurement of erythrocyte sedimentation rate, and determination of low-shear viscosity. A decrease in ionic strength caused a reduction in aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These findings reflect an increase in electrostatic repulsive force between normal RBC's by the reduction in ionic strength due to (a) a decrease in the screening of surface charge by counter-ions and (b) an increase in the thickness of the electric double layer. Divalent cations (Ca++, Mg++, and Ba++) increased aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These effects of the divalent cations are attributable to a decrease in surface potential of normal RBC's and a shrinkage of the electric double layer. It is concluded that the surface charge of RBC's plays a significant role in cell-to-cell interactions.


Sign in / Sign up

Export Citation Format

Share Document