scholarly journals Unusual binding-site-specific photophysical properties of a benzothiazole-based optical probe in amyloid beta fibrils

2018 ◽  
Vol 20 (31) ◽  
pp. 20334-20339 ◽  
Author(s):  
N. Arul Murugan ◽  
Robert Zaleśny ◽  
Hans Ågren

Varying electronic structure of BTA-3 probe in different binding sites in amyloid fibrils is the key mechanism behind its site-specific photophysical properties.

2020 ◽  
Vol 117 (47) ◽  
pp. 29677-29683
Author(s):  
Yiling Xiao ◽  
Sandra Rocha ◽  
Catherine C. Kitts ◽  
Anna Reymer ◽  
Tamás Beke-Somfai ◽  
...  

Yeast prions provide self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Classic dyes, such as thioflavin T and Congo red, exhibit large increases in fluorescence when bound to amyloids, but these dyes are not sensitive to local structural differences that distinguish amyloid strains. Here we describe the use of Michler’s hydrol blue (MHB) to investigate fibrils formed by the weak and strong prion fibrils of Sup35NM and find that MHB differentiates between these two polymorphs. Quantum mechanical time-dependent density functional theory (TDDFT) calculations indicate that the fluorescence properties of amyloid-bound MHB can be correlated to the change of binding site polarity and that a tyrosine to phenylalanine substitution at a binding site could be detected. Through the use of site-specific mutants, we demonstrate that MHB is a site-specific environmentally sensitive probe that can provide structural details about amyloid fibrils and their polymorphs.


2019 ◽  
Author(s):  
Michael Olp ◽  
Daniel Sprague ◽  
Stefan Kathman ◽  
Ziyang Xu ◽  
Alexandar Statsyuk ◽  
...  

<p>Brd4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly-conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to non-homologous cysteine residues within the <i>C</i>-terminal Brd4 bromodomain (Brd4-BD2), we performed a mid-throughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify Brd4. Subsequent mass spectrometry, NMR and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to Brd4 among all human bromodomains. This site is orthogonal to the Brd4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays. Finally, we tethered covalent fragments to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace Brd4 from chromatin.</p>


1993 ◽  
Vol 58 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Imad Al-Bala'a ◽  
Richard D. Bates

The role of more than one binding site on a nitroxide free radical in magnetic resonance determinations of the properties of the complex formed with a hydrogen donor is examined. The expression that relates observed hyperfine couplings in EPR spectra to complex formation constants and concentrations of each species in solution becomes much more complex when multiple binding sites are present, but reduces to a simpler form when binding at the two sites occurs independently and the binding at the non-nitroxide site does not produce significant differences in the hyperfine coupling constant in the complexed radical. Effects on studies of hydrogen bonding between multiple binding site nitroxides and hydrogen donor solvent molecules by other magnetic resonance methods are potentially more extreme.


2001 ◽  
Vol 66 (1) ◽  
pp. 139-154 ◽  
Author(s):  
M. Fátima C. Guedes Da Silva ◽  
Luísa M. D. R. S. Martins ◽  
João J. R. Fraústo Da Silva ◽  
Armando J. L. Pombeiro

The organonitrile or carbonyl complexes cis-[ReCl(RCN)(dppe)2] (1) (R = 4-Et2NC6H4 (1a), 4-MeOC6H4 (1b), 4-MeC6H4 (1c), C6H5 (1d), 4-FC6H4 (1e), 4-ClC6H4 (1f), 4-O2NC6H4 (1g), 4-ClC6H4CH2 (1h), t-Bu (1i); dppe = Ph2PCH2CH2PPh2), or cis-[ReCl(CO)(dppe)2] (2), as well as trans-[FeBr(RCN)(depe)2]BF4 (3) (R = 4-MeOC6H4 (3a), 4-MeC6H4 (3b), C6H5 (3c), 4-FC6H4 (3d), 4-O2NC6H4 (3e), Me (3f), Et (3g), 4-MeOC6H4CH2 (3h); depe = Et2PCH2CH2PEt2), novel trans-[FeBr(CO)(depe)2]BF4 (4) and trans-[FeBr2(depe)2] (5) undergo, as revealed by cyclic voltammetry at a Pt-electrode and in aprotic non-aqueous medium, two consecutive reversible or partly reversible one-electron oxidations assigned as ReI → ReII → ReIII or FeII → FeIII → FeIV. The corresponding values of the oxidation potentials IE1/2ox and IIE1/2ox (waves I and II, respectively) correlate with the Pickett's and Lever's electrochemical ligand and metal site parameters. This allows to estimate these parameters for the various nitrile ligands, depe and binding sites (for the first time for a FeIII/IV couple). The electrochemical ligand parameter show dependence on the "electron-richness" of the metal centre. The values of IE1/2ox for the ReI complexes provide some supporting for a curved overall relationship with the sum of Lever's electrochemical ligand parameter. The Pickett parametrization for closed-shell complexes is extended now also to 17-electron complexes, i.e. with the 15-electron ReII and FeIII centres in cis-{[ReCl(dppe)2]}+ and trans-{FeBr(depe)2}2+, respectively.


2001 ◽  
Vol 66 (8) ◽  
pp. 1208-1218 ◽  
Author(s):  
Guofeng Li ◽  
Mira Josowicz ◽  
Jiří Janata

Structural and electronic transitions in poly(thiophenyleneiminophenylene), usually referred to as poly(phenylenesulfidephenyleneamine) (PPSA) upon electrochemical doping with LiClO4 have been investigated. The unusual electrochemical behavior of PPSA indicates that the dopant anions are bound in two energetically different sites. In the so-called "binding site", the ClO4- anion is Coulombically attracted to the positively charged S or N sites on one chain and simultaneously hydrogen-bonded with the N-H group on a neighboring polymer chain. This strong interaction causes a re-organization of the polymer chains, resulting in the formation of a networked structure linked together by these ClO4- Coulombic/hydrogen bonding "bridges". However, in the "non-binding site", the ClO4- anion is very weakly bound, involves only the electrostatic interaction and can be reversibly exchanged when the doped polymer is reduced. In the repeated cycling, the continuous and alternating influx and expulsion of ClO4- ions serves as a self-organizing process for such networked structures, giving rise to a diminishing number of available "non-binding" sites. The occurrence of these ordered structures has a major impact on the electrochemical activity and the morphology of the doped polymer. Also due to stabilization of the dopant ions, the doped polymer can be kept in a stable and desirable oxidation state, thus both work function and conductivity of the polymer can be electrochemically controlled.


1993 ◽  
Vol 13 (9) ◽  
pp. 5805-5813 ◽  
Author(s):  
M M Wang ◽  
R Y Tsai ◽  
K A Schrader ◽  
R R Reed

Genes which mediate odorant signal transduction are expressed at high levels in neurons of the olfactory epithelium. The molecular mechanism governing the restricted expression of these genes likely involves tissue-specific DNA binding proteins which coordinately activate transcription through sequence-specific interactions with olfactory promoter regions. We have identified binding sites for the olfactory neuron-specific transcription factor, Olf-1, in the sequences surrounding the transcriptional initiation site of five olfactory neuron-specific genes. The Olf-1 binding sites described define the consensus sequence YTCCCYRGGGAR. In addition, we have identified a second binding site, the U site, in the olfactory cyclic nucleotide gated channel and type III cyclase promoters, which binds factors present in all tissue examined. These experiments support a model in which expression of Olf-1 in the sensory neurons coordinately activates a set of olfactory neuron-specific genes. Furthermore, expression of a subset of these genes may be modulated by additional binding factors.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.


2000 ◽  
Vol 74 (5) ◽  
pp. 2084-2093 ◽  
Author(s):  
Joel Schaley ◽  
Robert J. O'Connor ◽  
Laura J. Taylor ◽  
Dafna Bar-Sagi ◽  
Patrick Hearing

ABSTRACT The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


Sign in / Sign up

Export Citation Format

Share Document