scholarly journals Cellular responses of hyaluronic acid-coated chitosan nanoparticles

2018 ◽  
Vol 7 (5) ◽  
pp. 942-950 ◽  
Author(s):  
Abdulaziz Almalik ◽  
Ibrahim Alradwan ◽  
Majed A. Majrashi ◽  
Bashayer A. Alsaffar ◽  
Abdulmalek T. Algarni ◽  
...  

In recent years, nanotechnology has been proven to offer promising biomedical applications for in vivo diagnostics and drug delivery, stressing the importance of thoroughly investigating the biocompatibility of potentially translatable nanoparticles (NPs).

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Carmela Saturnino ◽  
Maria Stefania Sinicropi ◽  
Ortensia Ilaria Parisi ◽  
Domenico Iacopetta ◽  
Ada Popolo ◽  
...  

Hyaluronic acid (HA), a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradationin vivoand its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1).


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Yue Li ◽  
QingQing Leng ◽  
XianLun Pang ◽  
Huan Shi ◽  
YanLin Liu ◽  
...  

Abstract Dermal injury, including trauma, surgical incisions, and burns, remain the most prevalent socio-economical health care issue in the clinic. Nanomedicine represents a reliable administration strategy that can promote the healing of skin lesions, but the lack of effective drug delivery methods can limit its effectiveness. In this study, we developed a novel nano-drug delivery system to treat skin defects through spraying. We prepared curcumin-loaded chitosan nanoparticles modified with epidermal growth factor (EGF) to develop an aqueous EGF-modified spray (EGF@CCN) for the treatment of dermal wounds. In vitro assays showed that the EGF@CCN displayed low cytotoxicity, and that curcumin was continuously and slowly released from the EGF@CCN. In vivo efficacy on wound healing was then evaluated using full-thickness dermal defect models in Wistar rats, showing that the EGF@CCN had significant advantages in promoting wound healing. On day 12 post-operation, skin defects in the rats of the EGF@CCN group were almost completely restored. These effects were related to the activity of curcumin and EGF on skin healing, and the high compatibility of the nano formulation. We therefore conclude that the prepared nano-scaled EGF@CCN spray represents a promising strategy for the treatment of dermal wounds.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A28.2-A29
Author(s):  
D Carpanese ◽  
I Montagner ◽  
A Dalla Pietà ◽  
V Rossi ◽  
A Penna ◽  
...  

BackgroundThe use of proteins as immunogens is attractive for the development of vaccines, but requires efficient adjuvants to overcome their weak immunogenicity. Recently, we investigated the potential of the TLR2/4 agonist hyaluronan (HA) as an immunological adjuvant for protein-based vaccines.1 2 Conjugation of HA to antigens strongly increased their immunogenicity and promoted their rapid translocation to draining lymph nodes, resulting in robust and long-lasting humoral responses.1 On these bases, we investigated the potentiality of HA-based technology in the design of cancer vaccines. To this aim, HA was conjugated to the extracellular domain of rat HER2/neu (rHER2/neu) and validated in the preventive and therapeutic vaccination settings.Materials and MethodsFemale BALB/c or BALB-neuT mice were immunized with rHER2/neu-HA. In vivo depletion of CD4+, CD8+ T and B cells was performed, and sera and spleens were collected to characterized antigen-specific humoral and cellular responses. Vaccinated BALB/c mice were challenged and re-challenged with rHER2/neu-overexpressing TUBO cells to assess the protective or therapeutic activity of rHER2/neu-HA vaccination strategy, as well as immunological memory.ResultsHA performed efficiently as robust and long-lasting humoral (IgG1, IgG2a, and IgG2b) and cellular responses were detected using very low antigen doses and number of boosters. Outstandingly, at 1-year post-vaccination, anti-rHER2/neu specific antibodies showed even improved effector functions (maturation of affinity for the receptor and increased complement-derived cytotoxicity functions). HA vaccination turned out effective in both the prophylactic (100% mice survived) and therapeutic (tumor regression in 2/12 mice) settings, and broke tolerance against rHER2/neu, delaying spontaneous tumor growth in BALB-neuT mice. Both humoral and cellular responses contributed to the success of HA-based vaccination, but CD8+ T cells played only a marginal role.ConclusionsCancer vaccines have not yet achieved significant clinical efficacy due to their poor immunogenicity, and the validation of more effective adjuvants occurred sometimes at the expense of safety. HA combines the unique immunomodulatory features of a TLR agonist with the tolerability of a fully natural polymer, proving to be a promising adjuvant for the creation of effective and safe cancer vaccines with the potential for rapid clinical translation.ReferencesDalla Pietà A, Carpanese D, et al. Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. Cell Mol Immunol 2021;18(5):1197–1210.Rosato A, Montagner IM, Carpanese D, Dalla Pietà A. Hyaluronic acid as a natural adjuvant for protein and peptide-based vaccines. 30.04.2020. WO/2020/084558, PCT/IB2019/059122.Disclosure InformationD. Carpanese: None. I. Montagner: None. A. Dalla Pietà: None. V. Rossi: None. A. Penna: None. G. Zuccolotto: None. G. Pasut: None. A. Grigoletto: None. A. Rosato: None.


Author(s):  
Salil Desai ◽  
Anthony Moore ◽  
Benjamin Harrison ◽  
Jagannathan Sankar

This paper focuses on understanding microdroplet formation of sodium alginate biopolymer at various concentrations utilizing drop-on-demand inkjet technology. We investigate the effect of sodium chloride on the rheology of sodium alginate and derive a correlation between the size of the droplet versus the size of the microcapsules formed. Varying sizes of microcapsules are formed based on different concentrations of calcium chloride solvent. This understanding will give insight for fabricating drug delivery capsules and tissue scaffolds that are subject to extreme ambient conditions when interfaced with in-vivo environments.


2018 ◽  
Vol 53 ◽  
pp. 22-36 ◽  
Author(s):  
Habibollah Faraji ◽  
Reza Nedaeinia ◽  
Esmaeil Nourmohammadi ◽  
Bizan Malaekeh-Nikouei ◽  
Hamid Reza Sadeghnia ◽  
...  

Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1089
Author(s):  
Beomjin Park ◽  
Semi Yoon ◽  
Yonghyun Choi ◽  
Jaehee Jang ◽  
Soomin Park ◽  
...  

A micro/nanobubble (MNB) refers to a bubble structure sized in a micrometer or nanometer scale, in which the core is separated from the external environment and is normally made of gas. Recently, it has been confirmed that MNBs can be widely used in angiography, drug delivery, and treatment. Thus, MNBs are attracting attention as they are capable of constructing a new contrast agent or drug delivery system. Additionally, in order to effectively use an MNB, the method of securing its stability is also being studied. This review highlights the factors affecting the stability of an MNB and the stability of the MNB within the ultrasonic field. It also discusses the relationship between the stability of the bubble and its applicability in vivo.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2570 ◽  
Author(s):  
Inés Serrano-Sevilla ◽  
Álvaro Artiga ◽  
Scott G. Mitchell ◽  
Laura De Matteis ◽  
Jesús M. de la Fuente

Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.


2016 ◽  
Vol 4 (29) ◽  
pp. 5046-5058 ◽  
Author(s):  
Lin Li ◽  
Lu Tian ◽  
Yongli Wang ◽  
Wenjing Zhao ◽  
Fangqin Cheng ◽  
...  

We introduce a simple and effective strategy to design a promising drug delivery platform for improving the biomedical applications of smart nanodiamond carriers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1686
Author(s):  
Noorjahan Aibani ◽  
Raj Rai ◽  
Parth Patel ◽  
Grace Cuddihy ◽  
Ellen K. Wasan

The unique properties of chitosan make it a useful choice for various nanoparticulate drug delivery applications. Although chitosan is biocompatible and enables cellular uptake, its interactions at cellular and systemic levels need to be studied in more depth. This review focuses on the various physical and chemical properties of chitosan that affect its performance in biological systems. We aim to analyze recent research studying interactions of chitosan nanoparticles (NPs) upon their cellular uptake and their journey through the various compartments of the cell. The positive charge of chitosan enables it to efficiently attach to cells, increasing the probability of cellular uptake. Chitosan NPs are taken up by cells via different pathways and escape endosomal degradation due to the proton sponge effect. Furthermore, we have reviewed the interaction of chitosan NPs upon in vivo administration. Chitosan NPs are immediately surrounded by a serum protein corona in systemic circulation upon intravenous administration, and their biodistribution is mainly to the liver and spleen indicating RES uptake. However, the evasion of RES system as well as the targeting ability and bioavailability of chitosan NPs can be improved by utilizing specific routes of administration and covalent modifications of surface properties. Ongoing clinical trials of chitosan formulations for therapeutic applications are paving the way for the introduction of chitosan into the pharmaceutical market and for their toxicological evaluation. Chitosan provides specific biophysical properties for effective and tunable cellular uptake and systemic delivery for a wide range of applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2052
Author(s):  
Hannah Lindley-Hatcher ◽  
Jiarui Wang ◽  
Arturo I. Hernandez-Serrano ◽  
Joseph Hardwicke ◽  
Gabit Nurumbetov ◽  
...  

Water content of the skin is an important parameter for controlling the penetration rate of chemicals through the skin barrier; therefore, for transdermal patches designed for drug delivery to be successful, the effects of the patches on the water content of the skin must be understood. Terahertz (THz) spectroscopy is a technique which is being increasingly investigated for biomedical applications due to its high sensitivity to water content and non-ionizing nature. In this study, we used THz measurements of the skin (in vivo) to observe the effect of partially and fully occlusive skin patches on the THz response of the skin after the patches had been applied for 24 h. We were able to observe an increase in the water content of the skin following the application of the patches and to identify that the skin remained hyper-hydrated for four hours after the removal of the fully occlusive patches. Herein, we show that THz spectroscopy has potential for increasing the understanding of how transdermal patches affect the skin, how long the skin takes to recover following patch removal, and what implications these factors might have for how transdermal drug patches are designed and used.


Sign in / Sign up

Export Citation Format

Share Document