Anhydrous amorphous calcium carbonate (ACC) is structurally different from the transient phase of biogenic ACC

2019 ◽  
Vol 55 (48) ◽  
pp. 6946-6949 ◽  
Author(s):  
Chieh Tsao ◽  
Pao-Tao Yu ◽  
Chin-Hsuan Lo ◽  
Chung-Kai Chang ◽  
Chia-Hsin Wang ◽  
...  

An in situ ambient pressure soft X-ray spectroscopic study of the phase transformation of ACC exposed to water vapor in the mbar pressure range in conjunction with heat treatment.

2015 ◽  
Vol 44 (4) ◽  
pp. 434-436 ◽  
Author(s):  
Koji Maruyama ◽  
Hiroyuki Kagi ◽  
Toru Inoue ◽  
Hiroaki Ohfuji ◽  
Toru Yoshino

2016 ◽  
Vol 108 (21) ◽  
pp. 211902 ◽  
Author(s):  
Xian Chen ◽  
Nobumichi Tamura ◽  
Alastair MacDowell ◽  
Richard D. James

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.


MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 563-567 ◽  
Author(s):  
Quentin Altemose ◽  
Katrina Raichle ◽  
Brittani Schnable ◽  
Casey Schwarz ◽  
Myungkoo Kang ◽  
...  

ABSTRACTTransparent optical ZnO–Bi2O3–B2O3 (ZBB) glass-ceramics were created by the melt quenching technique. In this work, a melt of the glass containing stoichiometric ratios of Zn/Bi/B and As was studied. Differential scanning calorimeter (DSC) measurements was used to measure the thermal behavior. VIS/NIR transmission measurements were used to determine the transmission window. X-ray diffraction (XRD) was used to determine crystal phase. In this study, we explore new techniques and report a detailed study of in-situ XRD of the ZBB composition in order to correlate nucleation temperature, heat treatment temperature, and heat treatment duration with induced crystal phase.


2017 ◽  
Vol 53 (37) ◽  
pp. 5231-5234 ◽  
Author(s):  
Jack Chun-Ren Ke ◽  
Alex S. Walton ◽  
David J. Lewis ◽  
Aleksander Tedstone ◽  
Paul O'Brien ◽  
...  

Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time.


2015 ◽  
Vol 174 ◽  
pp. 532-541 ◽  
Author(s):  
Benedetto Bozzini ◽  
Matteo Amati ◽  
Patrizia Bocchetta ◽  
Simone Dal Zilio ◽  
Axel Knop-Gericke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document