Targeted filling of silica in Nafion by a modified in situ sol–gel method for enhanced fuel cell performance at elevated temperatures and low humidity

2019 ◽  
Vol 55 (38) ◽  
pp. 5499-5502 ◽  
Author(s):  
Guoxiao Xu ◽  
Shuai Li ◽  
Jing Li ◽  
Zhao Liu ◽  
Ying Li ◽  
...  

By facilely utilizing an ionic cluster as a nano-reactor, a silica network can be targeted filled in Nafion to increase the PEMFC performance at elevated temperatures and low humidity. Moreover, the stability of Nafion can be improved for the long-term operation of PEMFC under harsh conditions.

Author(s):  
Yan Ren ◽  
Jiayong Liu

In order to solve the problem of poor accuracy of traditional microcontroller attachment stability testing method, a microcontroller attachment stability testing method based on biosensor was designed to solve the existing problems. The reliability test index of the microcontroller is established, then the interference of the microcontroller accessory is detected and responded, and the interference detection signal of the microcontroller accessory is selected. The process design of stability detection of microcontroller accessories based on biosensor is completed. The experimental results show that the stability detection method based on biosensor designed in this paper can ensure the stability detection accuracy of microcontroller accessories above 80%, which is more accurate than traditional methods. It can be used to evaluate the stability, reliability and performance of microcontroller accessories in long-term operation.


2014 ◽  
Vol 485 ◽  
pp. 108-117 ◽  
Author(s):  
R.U. Ribeiro ◽  
D.M. Meira ◽  
C.B. Rodella ◽  
D.C. Oliveira ◽  
J.M.C. Bueno ◽  
...  

2020 ◽  
Author(s):  
Karol Jedrzejczak ◽  
Marcin Kasztelan ◽  
Jacek Szabelski ◽  
Przemysław Tokarski ◽  
Jerzy Orzechowski ◽  
...  

<p>The BSUIN (Baltic Sea Underground Innovation Network) aims to enhance the accessibility of the underground laboratories in the Baltic Sea region for innovation, business and science. One of the BSUIN project activities is characterization of natural background radiation (NBR) in underground facilities. A specific type of NRB is neutron radiation, whose measurement requires specific instruments and long-term exposure in-situ, in heavy underground conditions.</p><p>In this talk the method of natural neutron radiation background will be presented as well as results of pilot measurements in several underground locations. In order to make this measurements, a measuring setup was designed and made. The setup design is closely matched to the task: the setup is scalable in a wide range, completely remotely controlled (via the Internet) and capable of long-term operation (months).</p><p>The pilot measurements were performed in Callio Lab, Pyhäsalmi, Finland, (4100 m w.e.), in Reiche Zeche mine in Freiberg, Germany (410 m w.e.) and in Experimental Mine “Barbara” in Mikołów, Poland (100 m w.e).</p>


1999 ◽  
Vol 121 (4) ◽  
pp. 798-803 ◽  
Author(s):  
Toshiyuki Osada ◽  
Takashi Kawakami ◽  
Tadashi Yokoi ◽  
Yoshinobu Tsujimoto

ISO 10816-3 (a new standard of International Organization for Standardization) was established as vibration criteria for industrial rotating machinery based on the bearing housing vibration in situ. The appropriateness of the application of the proposed vibration criteria to pumps was discussed and studied by a work group in Japan. For the assessment, the data of vibration level in field were measured, and the effects of driver output, rotational speed, and pump type were studied. This paper describes the applicability of the new ISO criteria to the evaluation of vibration level of pumps, based on the results of the field measurements. It was found that the new boundaries of evaluation zones, which are acceptable for unrestricted long-term operation of pumps, are quite appropriate and satisfactory.


2014 ◽  
Vol 625 ◽  
pp. 530-535
Author(s):  
Kenji Yamaguchi ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
Mitsugu Yamaguchi ◽  
Ryoichi Nakazawa

Recently, the concern for the environment has been increasing rapidly. In machining processes, the treatment of water-soluble coolants waste has caused environmental problems. Water-soluble coolants contain surfactants, preservatives, and corrosion inhibitors for maintaining the stability and performance of the coolants. To reduce the management cost and environmental effect of water-soluble coolants, the authors have been studying a recycling system for water-soluble coolants. In the recycling system, oil-free recycle water is isolated from the coolant waste and reused as a diluent of the new coolant. The authors have been developing different types of water recovery methods for the recycling system, and the recovered water from the coolant waste has potential as a diluent for a new coolant. In this report, we focused on the amine (alkanolamine) -free water-soluble coolant. Some amine-free water-soluble coolants have been developed and are commercially available. A reduction in the environmental effect in the waste treatment of coolants is expected with amine-free coolants. We have demonstrated that the amine-free water-soluble coolant has equal or better cooling and lubricating performance compared with the conventional amine-containing coolant. In addition, the amine-free coolant shows good recyclability for the recycling system. The processing time of the recycling treatment of the amine-free coolant has been decreased by half with our recycling process compared with the conventional amine-containing coolant. In this report, we examined the stability, cooling performance and lubricating performance of the recycle amine-free water-soluble coolant in long term operation. The recycle amine-free water-soluble coolant is operated in a 3-axis machining center for several months. We observed concentration, pH, corrosion inhibition performance, cooling performance, and lubricating performance of the coolant. The results from these experiments show the amine-free water-soluble coolant has the advantage to use in the recycling system for water-soluble coolant.


2014 ◽  
Vol 70 (9) ◽  
pp. 1540-1547 ◽  
Author(s):  
Shengpin Li ◽  
Guoxin Huang ◽  
Xiangke Kong ◽  
Yingzhao Yang ◽  
Fei Liu ◽  
...  

In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH4+-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH4+-N was microbially oxidized to nitrate. Any remaining NH4+-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH4+-N was consistently removed, and approximately 40% of the influent NH4+-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH4+-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH4+-N removal.


1999 ◽  
Vol 576 ◽  
Author(s):  
Khan M. Asif ◽  
M.I. Sarwar ◽  
Z. Ahmad

Novel micro-composites from Polyvinyl chloride (PVC) and silica were prepared using sol-gel technique. Different catalysts were used for the in-situ generation of silica network from tetraethylorthosilicate (TEOS) in the PVC matrix. Thin transparent films containing various proportions of silica in PVC were cast by the solvent elution technique. Mechanical properties of these films were studied. The results showed an increase in the value of Young's modulus and strain at rupture by the addition of small amount of silica in PVC. However, the stress at yields point and stress at rupture decreased with the addition of silica contents. Scanning electron microscopy (SEM-EDAX) studies were also performed on these samples.


2016 ◽  
Vol 16 (4) ◽  
pp. 38-44
Author(s):  
J. Łabanowski ◽  
M. Jurkowski ◽  
M. Landowski

Abstract Microstructure transformations occur in the Manaurite XM cast steel tubes during long-term operation in the reformer furnace were revealed and described. The relationship between mechanical properties, an increase of internal diameter of the tube and microstructure degradation is discussed. Static tensile test was performed on two types of samples with different shapes. It has been shown differences in the results of tests and an explanation of this phenomenon.


2019 ◽  
Vol 624 ◽  
pp. A136
Author(s):  
S. P. Thompson ◽  
A. Herlihy ◽  
C. A. Murray ◽  
A. R. Baker ◽  
S. J. Day ◽  
...  

Context. Laboratory analogues can provide physical constraints to the interpretation of astronomical observations of cosmic dust but clearly do not experience the same formation conditions. To distinguish between properties intrinsic to the material and properties imprinted by their means of formation requires extensive characterisation. Aims. Sol–gel methods can produce amorphous silicates with potentially high reproducibility, but often require long drying times (24+ h) at elevated temperatures in air, controlled atmosphere, or vacuum. We investigate the possibility that microwave drying can be used to form amorphous silicate on a timescale of ∼10 min and characterise their structural and spectroscopic properties relative to silicates produced by other drying methods. Methods. Microwave-dried amorphous MgSiO3, Fe0.1Mg0.9SiO3 and Mg2SiO4 are characterised using X-ray powder diffraction, total X-ray scattering, small angle X-ray scattering and mid-IR FTIR spectroscopy, and compared to samples produced from the same gels but dried in-air and under vacuum. The development of crystalline structure in the microwave-dried silicates via thermal annealing up to 999°C is also investigated using in situ X-ray powder diffraction. Results. At the inter-atomic level the silicate structures are largely independent of drying method, however larger-scale structured domains, ranging from a ∼few × 10 Å to ∼100’s Å in size, are observed. These are ordered as mass fractals with discernible variation caused by the drying processes. The mid-IR 10 μm band profile is also found to be influenced by the drying process, likely due to the way removal of water and bonded OH influences the distribution of tetrahedral species. However, microwave drying also allows Fe to be easily incorporated into the silicate structure. In situ annealing shows that for amorphous MgSiO3 crystalline forsterite, enstatite and cristobalite are high temperature phases, while for Mg2SiO4 forsterite crystallises at lower temperatures followed by cristobalite at high temperature. For Fe0.1Mg0.9SiO3 the crystallisation temperature is significantly increased and only forsterite is observed. Crystalline SiO2 may be diagnostic of Mg-rich, Fe-poor grain mineralogies. The results are discussed in relation to the different thermal conditions required for dust to crystallise within protoplanetary disk lifetimes. Conclusions. Sol–gel microwave drying provides a fast and easy method of producing amorphous Mg- and Fe,Mg-silicates of both pyroxene and olivine compositions. Their structure and spectroscopic characteristics although similar to silicates produced using other drying methods, exhibit subtle variations which are particularly manifest spectroscopically in the mid-IR, and structurally over medium- and long-range length scales.


Sign in / Sign up

Export Citation Format

Share Document