Combination of intercalation and surface modification in layered zirconium phosphates: investigation of surface stability and reactivity

2020 ◽  
Vol 49 (12) ◽  
pp. 3841-3848 ◽  
Author(s):  
Eduardo Cruz ◽  
Edward J. Broker ◽  
Brian M. Mosby

The combination of intercalation and surface modification was used to prepare heterofunctional ZrP by two synthetic pathways. The resulting materials were used to investigate the impact of the interlayer contents on the surface chemistry of ZrP.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


2021 ◽  
Author(s):  
Syed Akhil ◽  
V.G.Vasavi Dutt ◽  
Nimai Mishra

In recent years inorganic lead halide perovskite nanocrystals (PNCs) have been used in photocatalytic reactions. The surface chemistry of the PNCs can play an important role in the excited state...


Author(s):  
Dhritiman Banerjee ◽  
Payal Banerjee ◽  
Asit Kumar Kar

The effects of surface modification on the defect state densities, optical properties, photocatalytic and quantum efficiencies of zinc oxide (ZnO) nanoplates have been studied in this work. Here, the aim...


2020 ◽  
Vol 21 (24) ◽  
pp. 9679
Author(s):  
Adam Lech ◽  
Beata A. Butruk-Raszeja ◽  
Tomasz Ciach ◽  
Krystyna Lawniczak-Jablonska ◽  
Piotr Kuzmiuk ◽  
...  

Recently, extreme ultraviolet (EUV) radiation has been increasingly used to modify polymers. Properties such as the extremely short absorption lengths in polymers and the very strong interaction of EUV photons with materials may play a key role in achieving new biomaterials. The purpose of the study was to examine the impact of EUV radiation on cell adhesion to the surface of modified polymers that are widely used in medicine: poly(tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and poly-L-(lactic acid) (PLLA). After EUV surface modification, which has been performed using a home-made laboratory system, changes in surface wettability, morphology, chemical composition and cell adhesion polymers were analyzed. For each of the three polymers, the EUV radiation differently effects the process of endothelial cell adhesion, dependent of the parameters applied in the modification process. In the case of PVDF and PTFE, higher cell number and cellular coverage were obtained after EUV radiation with oxygen. In the case of PLLA, better results were obtained for EUV modification with nitrogen. For all three polymers tested, significant improvements in endothelial cell adhesion after EUV modification have been demonstrated.


Surfaces ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 349-371 ◽  
Author(s):  
Muzammil Iqbal ◽  
Duy Khoe Dinh ◽  
Qasim Abbas ◽  
Muhammad Imran ◽  
Harse Sattar ◽  
...  

Inspired by nature, tunable wettability has attracted a lot of attention in both academia and industry. Various methods of polymer surface tailoring have been studied to control the changes in wetting behavior. Polymers with a precisely controlled wetting behavior in a specific environment are blessed with a wealth of opportunities and potential applications exploitable in biomaterial engineering. Controlled wetting behavior can be obtained by combining surface chemistry and morphology. Plasma assisted polymer surface modification technique has played a significant part to control surface chemistry and morphology, thus improving the surface wetting properties of polymers in many applications. This review focuses on plasma polymerization and investigations regarding surface chemistry, surface wettability and coating kinetics, as well as coating stability. We begin with a brief overview of plasma polymerization; this includes growth mechanisms of plasma polymerization and influence of plasma parameters. Next, surface wettability and theoretical background structures and chemistry of superhydrophobic and superhydrophilic surfaces are discussed. In this review, a summary is made of recent work on tunable wettability by tailoring surface chemistry with physical appearance (i.e. substrate texture). The formation of smart polymer coatings, which adjust their surface wettability according to outside environment, including, pH, light, electric field and temperature, is also discussed. Finally, the applications of tunable wettability and pH responsiveness of polymer coatings in real life are addressed. This review should be of interest to plasma surface science communality particularly focused controlled wettability of smart polymer surfaces.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Deniz Rende ◽  
Linda S. Schadler ◽  
Rahmi Ozisik

Polymer nanocomposite foams have received considerable attention because of their potential use in advanced applications such as bone scaffolds, food packaging, and transportation materials due to their low density and enhanced mechanical, thermal, and electrical properties compared to traditional polymer foams. In this study, silica nanofillers were used as nucleating agents and supercritical carbon dioxide as the foaming agent. The use of nanofillers provides an interface upon which CO2nucleates and leads to remarkably low average cell sizes while improving cell density (number of cells per unit volume). In this study, the effect of concentration, the extent of surface modification of silica nanofillers with CO2-philic chemical groups, and supercritical carbon dioxide process conditions on the foam morphology of poly(methyl methacrylate), PMMA, were systematically investigated to shed light on the relative importance of material and process parameters. The silica nanoparticles were chemically modified with tridecafluoro-1,1,2,2-tetrahydrooctyl triethoxysilane leading to three different surface chemistries. The silica concentration was varied from 0.85 to 3.2% (by weight). The supercritical CO2foaming was performed at four different temperatures (40, 65, 75, and 85°C) and between 8.97 and 17.93 MPa. By altering the surface chemistry of the silica nanofiller and manipulating the process conditions, the average cell diameter was decreased from9.62±5.22to1.06±0.32 μm, whereas, the cell density was increased from7.5±0.5×108to4.8±0.3×1011cells/cm3. Our findings indicate that surface modification of silica nanoparticles with CO2-philic surfactants has the strongest effect on foam morphology.


2005 ◽  
Vol 11 (S03) ◽  
pp. 162-165 ◽  
Author(s):  
L. von Mühlen ◽  
R. A. Simao ◽  
C. A. Achete

Surface chemistry and topography of materials are generally preponderant factors in a series of material properties, such as adhesion, wettability, friction and optical properties [1]. Wettability of films, for example, can be altered significantly by modifying its surface roughness and also by incorporating functional groups. Plasma treatment is a powerful and versatile way to modify surface properties of amorphous nitrogen-incorporated carbon thin films (a-C:H(N)) and obtain materials with improved properties, once it is possible to modify the surfaces in a controlled way by specific settings of plasma conditions. [2 - 4]


2018 ◽  
Vol 482 ◽  
pp. 470-477 ◽  
Author(s):  
Amira Alazmi ◽  
Omar El Tall ◽  
Mohamed N. Hedhili ◽  
Pedro M.F.J. Costa

2015 ◽  
Vol 60 (3) ◽  
pp. 1865-1870
Author(s):  
J. Przondziono ◽  
E. Hadasik ◽  
W. Walke ◽  
J. Szala

Abstract The study presents the results of research into the impact of strain in cold drawing and surface modification treatment on corrosion properties of wires made of X10CrNi 18-8 steel used in maxillofacial surgery. Scanning microscopy enabled to make images of the surface of wires after drawing process as well as after surface modification treatment. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves in artificial saliva. In order to evaluate physical and chemical properties of the surface, electrochemical impedance spectroscopy was performed. Test results show deterioration of corrosion properties of wires along with strain taking place in drawing process. It was proved that electrochemical polishing and chemical passivation caused sudden increase of resistance of wires made of stainless steel to pitting corrosion in artificial saliva.


2015 ◽  
Vol 3 (3) ◽  
pp. 424-441 ◽  
Author(s):  
H. M. Rostam ◽  
S. Singh ◽  
N. E. Vrana ◽  
M. R. Alexander ◽  
A. M. Ghaemmaghami

The impact of biomaterial surface topography and chemistry on antigen presenting cells’ phenotype and function.


Sign in / Sign up

Export Citation Format

Share Document