scholarly journals Inhibitory effect of a natural phenolic compound, 3-p-trans-coumaroyl-2-hydroxyquinic acid against the attachment phase of biofilm formation of Staphylococcus aureus through targeting sortase A

RSC Advances ◽  
2019 ◽  
Vol 9 (56) ◽  
pp. 32453-32461
Author(s):  
Yan-Ping Wu ◽  
Xiao-Yan Liu ◽  
Jin-Rong Bai ◽  
Hong-Chen Xie ◽  
Si-Liang Ye ◽  
...  

3-p-trans-Coumaroyl-2-hydroxyquinic acid (CHQA), a natural phenolic compound, prevented Staphylococcus aureus biofilm formation due to the inhibition of the initial attachment stage of biofilm development by targeting sortase A.

2008 ◽  
Vol 190 (8) ◽  
pp. 2759-2766 ◽  
Author(s):  
V. S. R. K. Maddula ◽  
E. A. Pierson ◽  
L. S. Pierson

ABSTRACT Pseudomonas chlororaphis strain 30-84 is a plant-beneficial bacterium that is able to control take-all disease of wheat caused by the fungal pathogen Gaeumannomyces graminis var. tritici. The production of phenazines (PZs) by strain 30-84 is the primary mechanism of pathogen inhibition and contributes to the persistence of strain 30-84 in the rhizosphere. PZ production is regulated in part by the PhzR/PhzI quorum-sensing (QS) system. Previous flow cell analyses demonstrated that QS and PZs are involved in biofilm formation in P. chlororaphis (V. S. R. K. Maddula, Z. Zhang, E. A. Pierson, and L. S. Pierson III, Microb. Ecol. 52:289-301, 2006). P. chlororaphis produces mainly two PZs, phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). In the present study, we examined the effect of altering the ratio of PZs produced by P. chlororaphis on biofilm formation and pathogen inhibition. As part of this study, we generated derivatives of strain 30-84 that produced only PCA or overproduced 2-OH-PCA. Using flow cell assays, we found that these PZ-altered derivatives of strain 30-84 differed from the wild type in initial attachment, mature biofilm architecture, and dispersal from biofilms. For example, increased 2-OH-PCA production promoted initial attachment and altered the three-dimensional structure of the mature biofilm relative to the wild type. Additionally, both alterations promoted thicker biofilm development and lowered dispersal rates compared to the wild type. The PZ-altered derivatives of strain 30-84 also differed in their ability to inhibit the fungal pathogen G. graminis var. tritici. Loss of 2-OH-PCA resulted in a significant reduction in the inhibition of G. graminis var. tritici. Our findings suggest that alterations in the ratios of antibiotic secondary metabolites synthesized by an organism may have complex and wide-ranging effects on its biology.


Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 115 ◽  
Author(s):  
Busi Siddhardha ◽  
Uday Pandey ◽  
K. Kaviyarasu ◽  
Rajasekharreddy Pala ◽  
Asad Syed ◽  
...  

The application of nanotechnology in medicine is gaining popularity due to its ability to increase the bioavailability and biosorption of numerous drugs. Chrysin, a flavone constituent of Orocylumineicum vent is well-reported for its biological properties. However, its therapeutic potential has not been fully exploited due to its poor solubility and bioavailability. In the present study, chrysin was encapsulated into chitosan nanoparticles using TPP as a linker. The nanoparticles were characterized and investigated for their anti-biofilm activity against Staphylococcus aureus. At sub-Minimum Inhibitory Concentration, the nanoparticles exhibited enhanced anti-biofilm efficacy against S. aureus as compared to its bulk counterparts, chrysin and chitosan. The decrease in the cell surface hydrophobicity and exopolysaccharide production indicated the inhibitory effect of the nanoparticles on the initial stages of biofilm development. The growth curve analysis revealed that at a sub-MIC, the nanoparticles did not exert a bactericidal effect against S. aureus. The findings indicated the anti-biofilm activity of the chrysin-loaded chitosan nanoparticles and their potential application in combating infections associated with S. aureus.


2008 ◽  
Vol 191 (3) ◽  
pp. 832-843 ◽  
Author(s):  
Nekane Merino ◽  
Alejandro Toledo-Arana ◽  
Marta Vergara-Irigaray ◽  
Jaione Valle ◽  
Cristina Solano ◽  
...  

ABSTRACT The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Agathe Boudet ◽  
Pauline Sorlin ◽  
Cassandra Pouget ◽  
Raphaël Chiron ◽  
Jean-Philippe Lavigne ◽  
...  

Cystic fibrosis (CF) is a genetic disease with lung abnormalities making patients particularly predisposed to pulmonary infections. Staphylococcus aureus is the most frequently identified pathogen, and multidrug-resistant strains (MRSA, methicillin-resistant S. aureus) have been associated with more severe lung dysfunction leading to eradication recommendations. Diverse bacterial traits and adaptive skills, including biofilm formation, may, however, make antimicrobial therapy challenging. In this context, we compared the ability of a collection of genotyped MRSA isolates from CF patients to form biofilm with and without antibiotics (ceftaroline, ceftobiprole, linezolid, trimethoprim, and rifampicin). Our study used standardized approaches not previously applied to CF MRSA, the BioFilm Ring test® (BRT®), the Antibiofilmogram®, and the BioFlux™ 200 system which were adapted for use with the artificial sputum medium (ASM) mimicking conditions more relevant to the CF lung. We included 63 strains of 10 multilocus sequence types (STs) isolated from 35 CF patients, 16 of whom had chronic colonization. The BRT® showed that 27% of the strains isolated in 37% of the patients were strong biofilm producers. The Antibiofilmogram® performed on these strains showed that broad-spectrum cephalosporins had the lowest minimum biofilm inhibitory concentrations (bMIC) on a majority of strains. A focus on four chronically colonized patients with inclusion of successively isolated strains showed that ceftaroline, ceftobiprole, and/or linezolid bMICs may remain below the resistance thresholds over time. Studying the dynamics of biofilm formation by strains isolated 3years apart in one of these patients using BioFlux™ 200 showed that inhibition of biofilm formation was observed for up to 36h of exposure to bMIC and ceftaroline and ceftobiprole had a significantly greater effect than linezolid. This study has brought new insights into the behavior of CF MRSA which has been little studied for its ability to form biofilm. Biofilm formation is a common characteristic of prevalent MRSA clones in CF. Early biofilm formation was strain-dependent, even within a sample, and not only observed during chronic colonization. Ceftaroline and ceftobiprole showed a remarkable activity with a long-lasting inhibitory effect on biofilm formation and a conserved activity on certain strains adapted to the CF lung environment after years of colonization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyo-Jung Shin ◽  
Sungtae Yang ◽  
Yong Lim

AbstractStaphylococcus aureus is one of the most common pathogens in biofilm-associated chronic infections. S. aureus living within biofilms evades the host immune response and is more resistant to antibiotics than planktonic bacteria. In this study, we generated S. aureus with low and high levels of biofilm formation using the rbf (regulator of biofilm formation) gene and performed a BioTimer assay to determine the minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of various types of antibiotics. We showed that biofilm formation by S. aureus had a greater effect on MBC than MIC, probably due to the different growth modes between planktonic and biofilm bacteria. Importantly, we found that the MBC for biofilm S. aureus was much higher than that for planktonic cells, but there was little difference in MBC between low and high levels of biofilm formation. These results suggest that once the biofilm is formed, the bactericidal activity of antibiotics is significantly reduced, regardless of the degree of S. aureus biofilm formation. We propose that S. aureus strains with varying degrees of biofilm formation may be useful for evaluating the anti-biofilm activity of antimicrobial agents and understanding antibiotic resistance mechanisms by biofilm development.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 372
Author(s):  
Boy Muchlis Bachtiar ◽  
Basri A. Gani ◽  
Astri Deviana ◽  
Nastiti Rilo Utami ◽  
Anissa Dien Andriyani ◽  
...  

This study explores the influence of precoating aptamer (Ca-apt1) on C. albicans viability while the fungus was growing in the presence of exposing condensed cigarette smoke (CSC), prepared from clove (CCSC) and non-clove (NCSC) cigarettes, for 48 h. Using qPCR, we found that mRNA expression of adhesion-associated genes (ALS3 and HWP1) was impaired by precoating C. albicans yeast cells with the aptamer. Conversely, the gene transcription was upregulated when aptamer-uncoated yeast was pre-treated with either CSC. In addition, by analysing the result of MTT ([3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay, we found that the presence of added CCSC or NCSC in growth medium for 48 h was significantly enhanced C. albicans biofilm development. However, the presence of precoated aptamer was significantly impaired biofilm development accelerated by the NCSC. The inhibitory effect of the Ca-apt1 was not dependent on the precoated aptamer (1 and 10%). Interestingly, we noted that the enhancer effect of treated CCSC was no longer effective when the yeast had been precoated with 10% aptamer tested. Additionally, light microscopy analysis revealed that precoating aptamer alleviates morphological changes of C. albicans (from yeast to hypha formation) that are enhanced by adding CCSC or NCSC in the growth medium. In conclusion, these results suggest that administration on Ca-ap1 exhibits a significant protective effect on CSC-induced biofilm formation by C. albicans.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1922
Author(s):  
Cristina Cattò ◽  
Federica Villa ◽  
Francesca Cappitelli

Increasing numbers of researches have suggested that some drugs with reactive oxygen species (ROS)-mediated mechanisms of action modulate biofilm formation of some pathogenic strains. However, the full contribution of ROS to biofilm development is still an open question. In this paper, the correlations between the antioxidant drug Erdosteine (Er) and its active Metabolite I (Met I), ROS and biofilm development of two strains of methicillin resistant Staphylococcus aureus are presented. Experiments revealed that Er and Met I at 2 and 5 mg/L increased up to three orders of magnitude the number of biofilm-dwelling cells, while the content of ROS within the biofilms was reduced above the 87%, with a major effect of Met I in comparison to Er. Comparative proteomics showed that, 5 mg/L Met I modified the expression of 30% and 65% of total proteins in the two strains respectively. Some proteins involved in cell replication were upregulated, and a nitric oxide-based mechanism is assumed to modulate the biofilm development by changing quorum sensitive pathways. Additionally, several proteins involved in virulence were downregulated in the presence of Met I, suggesting that treated cells, despite being greater in number, might have lost part of their virulence.


2021 ◽  
Author(s):  
◽  
Phillip Butterick

Antimicrobial resistance is a global health concern, with once treatable infections becoming resistant to current standard of care antimicrobials. The search for new antimicrobials has led Neem Biotech Ltd. to manufacture NX-AS-401 an ajoene containing compound derived from Allium sativuum, commonly known as garlic. The research contained within this thesis aimed to identify the effects of NX-AS-401 on Methicillin Resistant Staphylococcus aureus (MRSA), one of the most well documented and commonly isolated antimicrobial resistant bacterial pathogens. A multi-stage approach was utilised, identifying how NX-AS-401 affects planktonic growth, biofilm development and virulence factor production. In Chapters 3 and 4 initial comparison between different NX-AS-401 formulations was performed in determined that ajoene content did not alter the antimicrobial effect of NX-AS-401. EUCAST broth microdilution compared NX-AS-401 to current standard of care antibiotic and determined effective inhibitory and bactericidal concentrations as 128 µg/ml and 2048 µg/ml respectively. When NX-AS-401 was used in combination with various antibiotic classes a synergistic effect was identified and the inhibitory concentrations of both agents were reduced. The primary focus on Chapter 5 was how NX-AS-401 affected S. aureus biofilm formation. NX-AS-401 concentrations of 32 µg/ml inhibited biofilm formation and a concentration of 512 µg/ml caused disruption of pre-established biofilms. These effects were confirmed using scanning electron microscopy and confocal microscopy with live/dead staining. In gene expression studies it was determined that the effects of NX-AS-401 on S. aureus biofilms were strain dependent and a target gene was not identified. Chapter 6 demonstrated that NX-AS-401 did not alter the production of Staphylococcus aureus exo-enzyme production in vitro during phenotypic studies. In Galleria mellonella low NX-AS-401 concentrations assisted in the recovery from S. aureus in a strain dependent manner, however, high concentrations caused increased Galleria mellonella fatality. NX-AS-401 altered the ability of S. aureus cells to invade human epithelial cells but did not prevent adhesion of S. aureus to the cells. NX-AS-401 has multiple effects on S. aureus with the ability to affect both planktonic cells and biofilm structure showing promise as an antimicrobial. Its main effects are growth inhibition and biofilm disruption rather than causing bacterial cell death. These attributes and the synergistic effects between NX-AS-401 and multiple antibiotic classes, indicate NX-AS-401 has potential as a strong antimicrobial adjuvant.


2018 ◽  
Vol 13 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Liang Peng ◽  
Yunhao Xiong ◽  
Mei Wang ◽  
Manman Han ◽  
Weilan Cai ◽  
...  

AbstractThe essential oil of Mosla chinensis Maxim cv. Jiangxiangru is known for its antibacterial ability. This study aimed to investigate the chemical composition of Jiangxiangru essential oil and its inhibitory effect on Staphylococcus aureus biofilm formation. Gas chromatography/mass spectrometry (GC–MS) was used to determine the chemical composition of Jiangxiangru essential oil. Subsequently, the eight major chemical components were quantitatively analyzed using GC– MS, and their minimum inhibitory concentration (MIC) values against S. aureus were tested. Biofilm formation was detected by crystal violet semi-quantitative method and silver staining. Of the 59 peaks detected, 29 were identified by GC–MS. Of these peaks, thymol, carvacrol, p-cymene, γ-terpinene, thymol acetate, α-caryophyllene, 3-carene, and carvacryl acetate were present at a relatively higher concentration. The results of the quantitative test showed that thymol, carvacrol, p-cymene, and γ-terpinene were the major components of the essential oil. Among the eight reference substances, only thymol, carvacrol, and thymol acetate had lower MICs compared with the essential oil. Essential oil, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene showed the better inhibition of S. aureus biofilm formation. When one fourth of the MIC concentrations were used for these substances (0.0625 mg/mL for essential oil, 0.0305 mg/mL for carvacrol, 1.458 mg/mL for carvacryl acetate, 0.1268 mg/mL for α-caryophyllene, and 2.5975 mg/mL for 3-carene), the inhibition rates were over 80%. However, thymol, γ-terpinene, thymol acetate, and p-cymene showed a relatively poor inhibition of S. aureus biofilm formation. When 1× MIC concentrations of these substances were used, the inhibition rates were less than 50%. In conclusion, Jiangxiangru essential oil and its major components, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene, strongly inhibited biofilm formation in S. aureus.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Ye Jin ◽  
Yinjuan Guo ◽  
Qing Zhan ◽  
Yongpeng Shang ◽  
Di Qu ◽  
...  

ABSTRACT Previous studies have shown that the administration of antibiotics at subinhibitory concentrations stimulates biofilm formation by the majority of multidrug-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated the effect of subinhibitory concentrations of mupirocin on biofilm formation by the community-associated (CA) mupirocin-sensitive MRSA strain USA300 and the highly mupirocin-resistant clinical S. aureus SA01 to SA05 isolates. We found that mupirocin increased the ability of MRSA cells to attach to surfaces and form biofilms. Confocal laser scanning microscopy (CLSM) demonstrated that mupirocin treatment promoted thicker biofilm formation, which also correlated with the production of extracellular DNA (eDNA). Furthermore, quantitative real-time PCR (RT-qPCR) results revealed that this effect was largely due to the involvement of holin-like and antiholin-like proteins (encoded by the cidA gene), which are responsible for modulating cell death and lysis during biofilm development. We found that cidA expression levels significantly increased by 6.05- to 35.52-fold (P < 0.01) after mupirocin administration. We generated a cidA-deficient mutant of the USA300 S. aureus strain. Exposure of the ΔcidA mutant to mupirocin did not result in thicker biofilm formation than that in the parent strain. We therefore hypothesize that the mupirocin-induced stimulation of S. aureus biofilm formation may involve the upregulation of cidA.


Sign in / Sign up

Export Citation Format

Share Document