All-printed multilayer materials with improved magnetoelectric response

2019 ◽  
Vol 7 (18) ◽  
pp. 5394-5400 ◽  
Author(s):  
A. C. Lima ◽  
N. Pereira ◽  
R. Policia ◽  
C. Ribeiro ◽  
V. Correia ◽  
...  

For the first time is reported the development of a screen printed flexible magnetoelectric material based on P(VDF–TrFE), PVDF and CoFe2O4. The ME voltage coefficient of 164 mV cm−1 Oe−1 at a longitudinal resonance frequency of 16.2 kHz, the highest reported in the literature, certifies the use of the printed material on printed electronics, sensors, actuators, and energy harvesters.

2018 ◽  
Vol 18 (11) ◽  
pp. 4509-4516 ◽  
Author(s):  
Oguz Yasar ◽  
Hasan Ulusan ◽  
Ozge Zorlu ◽  
Ozlem Sardan-Sukas ◽  
Haluk Kulah

Author(s):  
Zhenxi Liu ◽  
Jiamin Chen ◽  
Wuhao Yang ◽  
Tianyi Zheng ◽  
Qifeng Jiao ◽  
...  

Abstract MEMS resonators have been widely used in the magneto-resistive (MR) sensor for modulating the magnetic flux to enhance the detection limit. However, the manufacturing tolerances in MEMS fabrication processes make it challenging to fabricate the identical resonators with the same vibration frequency, which greatly decreases the detection limit of the MR sensor. To synchronize the MEMS resonators and improve the performance of the MR sensor, the double end tuning fork (DETF) based comb-driven MEMS resonators is proposed in this paper, making the system operate at the out-of-phase mode to complete the synchronization. The dynamic behaviour of the resonators is investigated through theoretical analysis, numerical solution based on MATLAB code and Simulink, and experimental verification. The results show that the transverse capacitances in the comb will significantly affect the resonance frequency due to the second-order electrostatic spring constant. It is the first time to observe the phenomenon that the resonant frequency increases with the increase of the bias, and it can also decrease with increasing the bias through adjusting the initial space between the fixed finger and the moving mass, they are different from the model about spring softening and spring hardening. Besides, the proposed DETF-based comb-driven resonators can suppress the in-phase and out-of-phase mode through adjusting the driving and sensing ports, and sensing method, meanwhile make the magnetic flux modulation fully synchronized, and maximize the modulation efficiency, and minimize the detection limit. These characteristics are appropriate for the MR sensor, even other devices that need to adjust the resonance frequency and vibration amplitude. Furthermore, the model and the design can also be extended to characteristic the single end tuning fork (SETF) based MEMS resonator and other MEMS-based MR sensors.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1072
Author(s):  
Xi Zuo ◽  
Li Chen ◽  
Wenjun Pan ◽  
Xingchen Ma ◽  
Tongqing Yang ◽  
...  

Fluorinated polyethylene propylene (FEP) bipolar ferroelectret films with a specifically designed concentric tunnel structure were prepared by means of rigid-template based thermoplastic molding and contact polarization. The properties of the fabricated films, including the piezoelectric response, mechanical property, and thermal stability, were characterized, and two kinds of energy harvesters based on such ferroelectret films, working in 33- and 31-modes respectively, were investigated. The results show that the FEP films exhibit significant longitudinal and radial piezoelectric activities, as well as superior thermal stability. A quasi-static piezoelectric d33 coefficient of up to 5300 pC/N was achieved for the FEP films, and a radial piezoelectric sensitivity of 40,000 pC/N was obtained in a circular film sample with a diameter of 30 mm. Such films were thermally stable at 120 °C after a reduction of 35%. Two types of vibrational energy harvesters working in 33-mode and 31-mode were subsequently designed. The results show that a power output of up to 1 mW was achieved in an energy harvester working in 33-mode at a resonance frequency of 210 Hz, referring to a seismic mass of 33.4 g and an acceleration of 1 g (g is the gravity of the earth). For a device working in 31-mode, a power output of 15 μW was obtained at a relatively low resonance frequency of 26 Hz and a light seismic mass of 1.9 g. Therefore, such concentric tunnel FEP ferroelectric films provide flexible options for designing vibrational energy harvesters working either in 33-mode or 31-mode to adapt to application environments.


2020 ◽  
Vol 7 (2) ◽  
pp. 592-597 ◽  
Author(s):  
Zhongbo Zhang ◽  
Jifu Zheng ◽  
Kasun Premasiri ◽  
Man-Hin Kwok ◽  
Qiong Li ◽  
...  

For the first time, sulfonylated polymers of intrinsic microporosity (PIMs) are exploited for high-κ, high-temperature, and low-loss gate dielectric applications.


2017 ◽  
Vol 9 (17) ◽  
pp. 2570-2577 ◽  
Author(s):  
Mohammad Rizwan ◽  
Noor Faizah Mohd-Naim ◽  
Natasha Ann Keasberry ◽  
Minhaz Uddin Ahmed

A highly sensitive and label-free electrochemiluminescence (ECL) immunosensor was fabricated for the detection of β-2-microglobulin (β2M) based on a gold nanoparticle-doped@carbon nano-onion chitosan nanocomposite modified cadmium selenide quantum dot screen-printed electrode (QDs-SPE/AuNPs@CNOs-CS) for the first time.


Author(s):  
Mahesh Soni ◽  
Ravinder Dahiya

Inspired by biology, significant advances have been made in the field of electronic skin (eSkin) or tactile skin. Many of these advances have come through mimicking the morphology of human skin and by distributing few touch sensors in an area. However, the complexity of human skin goes beyond mimicking few morphological features or using few sensors. For example, embedded computing (e.g. processing of tactile data at the point of contact) is centric to the human skin as some neuroscience studies show. Likewise, distributed cell or molecular energy is a key feature of human skin. The eSkin with such features, along with distributed and embedded sensors/electronics on soft substrates, is an interesting topic to explore. These features also make eSkin significantly different from conventional computing. For example, unlike conventional centralized computing enabled by miniaturized chips, the eSkin could be seen as a flexible and wearable large area computer with distributed sensors and harmonized energy. This paper discusses these advanced features in eSkin, particularly the distributed sensing harmoniously integrated with energy harvesters, storage devices and distributed computing to read and locally process the tactile sensory data. Rapid advances in neuromorphic hardware, flexible energy generation, energy-conscious electronics, flexible and printed electronics are also discussed. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.


Author(s):  
Isaias Cueva-Perez ◽  
Roque Alfredo Osornio-Rios ◽  
Aurelio Dominguez-Gonzalez ◽  
Ion Stiharu ◽  
Angel Perez-Cruz

In recent years, the need for portable, low-cost, and eco-friendly devices for testing and monitoring has arisen. Paper-based devices have emerged as a response to these needs due to the properties induced by capillarity, flexibility, disposability, and biodegradability. In this work, the authors explored the possibility of tuning the hygro-mechanical response of paper-based cantilever beams using glycerol. A lumped-parameter model with non-linear stiffness is used to describe the dynamic response of the beams using three parameters. An experimental method based on resonance frequency tests is used to study the influence of glycerol on the dynamic response of four different beam configurations. The obtained results demonstrate that the resonance frequency of paper-based mechanical systems can be easily tuned by the imbibition of a glycerol–water solution. This study could lead to the development of tunable paper-based mechanical systems for specific applications such as energy harvesters and hygro-mechanical-based sensors.


The Analyst ◽  
2015 ◽  
Vol 140 (5) ◽  
pp. 1543-1550 ◽  
Author(s):  
Loanda R. Cumba ◽  
Jamie P. Smith ◽  
Dale A. C. Brownson ◽  
Jesús Iniesta ◽  
Jonathan P. Metters ◽  
...  

We demonstrate, for the first time, that the electroanalytical quantification of pindolol is actually possible using bare (unmodified) screen-printed graphite electrodes (SPEs).


Author(s):  
Д.А. Филиппов ◽  
В.М. Лалетин ◽  
Н.Н. Поддубная ◽  
V.V. Shvartsman ◽  
D.C. Lupascu ◽  
...  

A new way for determining the magnetostriction characteristics of a composite multiferroics using the magnetoelectric response of the structure is proposed. It is shown that integral from the field dependency of linear magnetoelectric coefficient is the magnetostriction characteristic of the structure. The results of an experimental study of the physical properties of bulk composites based on lead zirconate titanate and ferrite-nickel spinel are presented. Based on the field dependence of the magnetoelectric voltage coefficient, magnetostriction curves of composite structures with a content of ferrospinel of 10–70% were obtained.


Sign in / Sign up

Export Citation Format

Share Document