Oleic acid-induced, controllable surface oxidation to enhance the photoresponse performance of Sb2Se3 nanorods

CrystEngComm ◽  
2020 ◽  
Vol 22 (37) ◽  
pp. 6189-6194
Author(s):  
Fan Guan ◽  
Linjie Li ◽  
Yusong Cui ◽  
Tingting Wang ◽  
Shaopeng Li ◽  
...  

The surface oxidation level of Sb2Se3 nanorods is tunable by varying the volume ratio of oleic acid during the synthesis and a modest oxidation level (20–30%) is found to be favorable for the optoelectronic properties of Sb2Se3.

2021 ◽  
Vol 348 ◽  
pp. 01015
Author(s):  
Nabila Jarmouni ◽  
Marco Tomaiuolo ◽  
Alessio Gabbani ◽  
Francesco Pineider ◽  
Rajaa Bassam ◽  
...  

Hybrid halide perovskites are semicondoctor materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology. They have size-tunable emissions due to quantum size effects. In this work, the Formamidinium Lead Bromide perovskite CH(NH2)2PbBr3 nanoplatelets (NPLs) were successfully synthesized by ligand-assisted reprecipitation method under room condition, in which the emission color-tunability was realized via quantum size effect without anion–halide mixing, by varying the oleylamine to oleic acid volume ratio as surfactants, while the total amount of oleic acid remained unchanged. We are able to adjust the optical proprieties of FAPbBr3 NPLs and, consequently, their structural properties. The obtained colloidal solutions of FAPbBr3 nanoplatelets with uniform size exhibited different photoluminescence wavelengths covering the spectral region from 440 to 525 nm. The maximum absolute PL quantum yield (PLQY) of the green emission was measured to be as high as 80% at room temperature. The size of FAPbBr3 NPLs could be effectively tuned from 15.5 to 38.1 nm with an increase in the oleylamine and oleic acid ligands ratio.


1996 ◽  
Vol 80 (3) ◽  
pp. 742-746 ◽  
Author(s):  
S. Suzuki ◽  
T. Akahori ◽  
N. Miyazawa ◽  
M. Numata ◽  
T. Okubo ◽  
...  

It is unknown how the in vivo alveolar surface area-to-volume ratio (S/V) changes in low-pressure pulmonary edema. Here, the S/V is the area of the air-tissue interface per unit total volume (air plus tissue). We hypothesized that in oleic acid (OA)-induced edema inactivation of the pulmonary surfactant may increase surface tension and decrease the S/V at any given lung volume. OA (0.04 mg/kg) was intravenously injected into dogs. We measured the in vivo S/V (equivalent to the inverse of optical mean free path by light-scattering stereology and the pressure-volume (PV) curve 60-90 min after OA administration. OA administration decreased the lung volume at each transpulmonary pressure and increased the wet-to-dry weight ratio. The S/V decreased after OA administration (optical mean free path increased). The air-filled PV curves shifted downward after OA, but the saline-filled PV curves after OA administration did not differ significantly from control saline-filled curves. The difference in transpulmonary pressure between air- and saline-filled PV curves (an index of the magnitude of surface tension) was increased in OA-induced pulmonary edema. This study suggests that in OA-induced pulmonary edema the alveolar surface tension increases and the S/V decreases, presumably due to inactivation of surfactant by serum leakage to alveoli.


2011 ◽  
Vol 284-286 ◽  
pp. 1001-1005 ◽  
Author(s):  
Peng Wang ◽  
Jing Lv ◽  
Lian Hai Wang ◽  
Qiang Ma ◽  
Xin He Zhu

This paper adopts wet method to prepare serpentine particles on the planetary ball mill, executes lipophilic degree tests and friction and wear tests of these particles. The results showed that: 1) as the modification agent, the optimum dosage of oleic acid is when the volume ratio of oleic acid and serpentine particles is 2, and the optimum time of milling (modification) is 24h. 2) 4012 maritime lubricating oil with serpentine particles has obvious anti-wear and friction effect, and the optimum dosage range of serpentine particles is 0.9%-1.0%. According to the outcomes of metallurgical microscope observation and electron microprobe analysis, a conclusion can be drawn: during the process of friction and wear, serpentine particles brought on physical or chemical reactions with the surface of test samples, create a layer of protective film, thus this kind of lubricating oil has filling function to the furrow of friction pair surface, so as to decrease the surface roughness, decrease the degree of friction and wear.


Nanoscale ◽  
2021 ◽  
Author(s):  
Dabin Lin ◽  
Wenjun Ni ◽  
Gagik G. Gurzadyan ◽  
Fangteng Zhang ◽  
Weiren Zhao ◽  
...  

Two-dimensional transition metal dichalcogenides have attracted tremendous attention in the past few decades due to their attractive optoelectronic properties. However, their widespread utility in photonic devices and components is still...


2021 ◽  
Vol 548 ◽  
pp. 149069
Author(s):  
Kwangsik Jeong ◽  
Dambi Park ◽  
Inhee Maeng ◽  
Dajung Kim ◽  
Hoedon Kwon ◽  
...  

Author(s):  
S. McKernan ◽  
C. B. Carter

The oxidation of natural olivine has previously been performed on bulk samples and the reactions followed by preparation of TEM specimens from the annealed material. These results show that below ∼1000°C hematite and amorphous silica are formed, particularly around dislocations. At higher temperatures magnetite and some enstatite-like phase are formed. In both cases the olivine is left almost totally Fe depleted. By performing the oxidation on characterized thin TEM specimens it is possible to obtain more information on the nucleation and growth of the second phases formed. The conditions in a thin foil, however, are very different from those in the bulk especially with regard to surface effects. The nucleation of precipitates in particular may be expected to occur differently in these thin foils than in the bulk.TEM specimens of natural olivine (approximate composition Mg+Fe+Si2o4) which had been annealed at 1000°C for 1 hr were prepared by mechanical polishing and dimpling, followed by Ar ion milling to perforation. The specimens were characterized in the electron microscope and then heated in air in alumina boats to 900°C for between 30 and 180 minutes.


Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


Sign in / Sign up

Export Citation Format

Share Document