Double Emulsion with Ultrathin Shell by Microfluidic Step-Emulsification

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Xinjin Ge ◽  
Boris Rubinstein ◽  
Yifeng He ◽  
Frederick Bruce ◽  
Liaonan Li ◽  
...  

Double emulsions with ultrathin shells are important in some biomedical applications, such as controlled drug release. However, the existing production techniques require two or more manipulation steps, or more complicated...

2022 ◽  
Vol 11 ◽  
Author(s):  
Zhengyang Yang ◽  
Wei Deng ◽  
Xiao Zhang ◽  
Yongbo An ◽  
Yishan Liu ◽  
...  

Digestive tumours, a common kind of malignancy worldwide, have recently led to the most tumour-related deaths. Angiogenesis, the process of forming novel blood vessels from pre-existing vessels, is involved in various physiological and pathological processes in the body. Many studies suggest that abnormal angiogenesis plays an important role in the growth, progression, and metastasis of digestive tumours. Therefore, anti-angiogenic therapy is considered a promising target for improving therapeutic efficacy. Traditional strategies such as bevacizumab and regorafenib can target and block the activity of proangiogenic factors to treat digestive tumours. However, due to resistance and some limitations, such as poor pharmacokinetics, their efficacy is not always satisfactory. In recent years, nanotechnology-based anti-angiogenic therapies have emerged as a new way to treat digestive tumours. Compared with commonly used drugs, nanoparticles show great potential in tumour targeted delivery, controlled drug release, prolonged cycle time, and increased drug bioavailability. Therefore, anti-angiogenic nanoparticles may be an effective complementary therapy to treat digestive tumours. In this review, we outline the different mechanisms of angiogenesis, the effects of nanoparticles on angiogenesis, and their biomedical applications in various kinds of digestive tumours. In addition, the opportunities and challenges are briefly discussed.


2013 ◽  
Vol 771 ◽  
pp. 13-16
Author(s):  
Shi Chao Wu ◽  
Xiang Rui Yang ◽  
Zhen Qing Hou ◽  
Qian Jiang ◽  
Yan Ge Wang

We report a new type of biochemical materialmultifunctional paclitaxel-loaded poly lactide-lecithin (PLA-lecithin) microbubbles which has been developed with a method of ultrasonic double emulsion solvent evaporation (UDES) combined with lyophilization. Bubbles were characterized to be hollow, well dispersed andwith size of 300nm~2um. Paclitaxel loading efficiency could reach up to 12%, and bubbles with different size and different lecithin content showed varied drug release characteristics but all displayed slow-release and ultrasound controlled properties, illustrating the ultrasound responsive drug release effect of the combination of microbubbles and ultrasound.


e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
Joseph Jagur-Grodzinski

Abstract Papers published during 2001 - 2002 on the synthesis and preparation of polymers and polymer-based devices and their applications are reviewed. Polymers for drug and gene delivery, gene therapy, controlled drug release, conjugation with peptides, proteins, and nucleotides, tissue engineering, bone repair and regeneration, coatings, wound dressing, artificial skin and other artificial organs are discussed.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (6) ◽  
pp. 1083-1086 ◽  
Author(s):  
Bárbara Herranz-Blanco ◽  
Laura R. Arriaga ◽  
Ermei Mäkilä ◽  
Alexandra Correia ◽  
Neha Shrestha ◽  
...  

Thermally hydrocarbonized porous silicon microparticles are encapsulated into the aqueous cores of double emulsion lipid vesicle drops to form advanced multistage drug delivery systems.


2018 ◽  
Vol 68 (12) ◽  
pp. 2925-2918
Author(s):  
Gabriela Cioca ◽  
Maricel Agop ◽  
Marcel Popa ◽  
Simona Bungau ◽  
Irina Butuc

One of the main challenges in designing a release system is the possibility to control the release rate in order to maintain it at a constant value below a defined limit, to avoid exceeding the toxicity threshold. We propose a method of overcoming this difficulty by introducing the drug into liposomes, prior to its inclusion in the hydrogel. Furthermore, a natural cross linker (as is tannic acid) is used, instead of the toxic cross linkers commonly used, thus reducing the toxicity of the release system as a whole.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph C. Bear ◽  
P. Stephen Patrick ◽  
Alfred Casson ◽  
Paul Southern ◽  
Fang-Yu Lin ◽  
...  

Author(s):  
Suyoung Been ◽  
Jeongmin Choi ◽  
Young Hun Lee ◽  
Pil Yun Kim ◽  
Won Kyung Kim ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 154
Author(s):  
Fasih Bintang Ilhami ◽  
Kai-Chen Peng ◽  
Yi-Shiuan Chang ◽  
Yihalem Abebe Alemayehu ◽  
Hsieh-Chih Tsai ◽  
...  

Development of stimuli-responsive supramolecular micelles that enable high levels of well-controlled drug release in cancer cells remains a grand challenge. Here, we encapsulated the antitumor drug doxorubicin (DOX) and pro-photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG), in order to achieve effective drug delivery combined with photo-chemotherapy. The resulting DOX/5-ALA-loaded micelles exhibited excellent light and pH-responsive behavior in aqueous solution and high drug-entrapment stability in serum-rich media. A short duration (1–2 min) of laser irradiation with visible light induced the dissociation of the DOX/5-ALA complexes within the micelles, which disrupted micellular stability and resulted in rapid, immediate release of the physically entrapped drug from the micelles. In addition, in vitro assays of cellular reactive oxygen species generation and cellular internalization confirmed the drug-loaded micelles exhibited significantly enhanced cellular uptake after visible light irradiation, and that the light-triggered disassembly of micellar structures rapidly increased the production of reactive oxygen species within the cells. Importantly, flow cytometric analysis demonstrated that laser irradiation of cancer cells incubated with DOX/5-ALA-loaded A-PPG micelles effectively induced apoptotic cell death via endocytosis. Thus, this newly developed supramolecular system may offer a potential route towards improving the efficacy of synergistic chemotherapeutic approaches for cancer.


Sign in / Sign up

Export Citation Format

Share Document