scholarly journals Construction of activated carbon-supported B3N3 doped carbon as metal-free catalyst for dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 183-191
Author(s):  
Chen Chen ◽  
Zhaobing Shen ◽  
Yaping Zhu ◽  
Fan Wang ◽  
Biao Jiang ◽  
...  

Metal-free catalysts synthesized by impregnating activated carbons with B3N3-containing arylacetylene resin showed good catalytic performance for industrial dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride monomer.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3123
Author(s):  
Mireia Buaki-Sogó ◽  
Leire Zubizarreta ◽  
Marta García-Pellicer ◽  
Alfredo Quijano-López

Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis. The use of activated carbons from biomass origins is a step forward in the development of more sustainable processes enhancing material recycling and reuse in the frame of a circular economy. In this article, a perspective of different heterogeneous catalysts based on sustainable activated carbon from biomass origins will be analyzed focusing on their properties and catalytic performance for determined energy-related applications. In this way, the article aims to give the reader a scope of the potential of these tailor-made sustainable materials as a support in heterogeneous catalysis and future developments needed to improve catalyst performance. The selected applications are those related with H2 energy and the production of biomethane for energy through CO2 methanation.



2018 ◽  
Vol 3 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Zhaobing Shen ◽  
Hong Zhao ◽  
Yue Liu ◽  
Zeyuan Kan ◽  
Ping Xing ◽  
...  

The global “Minamata Convention on Mercury” came into effect in 2017 exerting huge environmental pressure on acetylene-based polyvinyl chloride (PVC) processes.





2017 ◽  
pp. 96-103 ◽  
Author(s):  
Gillian Eggleston ◽  
Isabel Lima ◽  
Emmanuel Sarir ◽  
Jack Thompson ◽  
John Zatlokovicz ◽  
...  

In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the sugar industry with harsher processing conditions. There is an urgent need in the sugar industry to be able to remove or inactivate residual, active amylases either in factory or refinery streams or both. A survey of refineries that used amylase and had activated carbon systems for decolorizing, revealed they did not have any customer complaints for residual amylase. The use of high performance activated carbons to remove residual amylase activity was investigated using a Phadebas® method created for the sugar industry to measure residual amylase in syrups. Ability to remove residual amylase protein was dependent on the surface area of the powdered activated carbons as well as mixing (retention) time. The activated carbon also had the additional benefit of removing color and insoluble starch.





2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.



Author(s):  
Barry S. Levy

This chapter describes occupational and environmental liver disorders. It describes the types of liver function and types of liver damage, and how these functions and this damage can be assessed. Workers in healthcare and solid waste management are at increased risk hepatitis B virus and hepatitis C virus infections. Occupational exposure to swine is associated with hepatitis E virus infection. More than 100 industrial chemicals can be acutely hepatotoxic in experimental animals or humans. Metabolic reactions may affect the hepatotoxicity of chemicals. Occupational exposure to organic solvents can cause toxic hepatitis. Occupational exposure to vinyl chloride monomer has been causally associated with toxicant-associated fatty liver disease as well as a form of non-cirrhotic portal hypertension. Several agents can cause cancer of the liver or bile ducts. Vinyl chloride monomer is causally associated with angiosacoma of the liver. Arsenic causes liver cancer. Dietary exposure to aflatoxins can cause hepatoceulluar carcinoma.



Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1731
Author(s):  
Chih-Chung Lai ◽  
Feng-Hao Hsu ◽  
Su-Yang Hsu ◽  
Ming-Jay Deng ◽  
Kueih-Tzu Lu ◽  
...  

The specific energy of an aqueous carbon supercapacitor is generally small, resulting mainly from a narrow potential window of aqueous electrolytes. Here, we introduced agarose, an ecologically compatible polymer, as a novel binder to fabricate an activated carbon supercapacitor, enabling a wider potential window attributed to a high overpotential of the hydrogen-evolution reaction (HER) of agarose-bound activated carbons in sulfuric acid. Assembled symmetric aqueous cells can be galvanostatically cycled up to 1.8 V, attaining an enhanced energy density of 13.5 W h/kg (9.5 µW h/cm2) at 450 W/kg (315 µW/cm2). Furthermore, a great cycling behavior was obtained, with a 94.2% retention of capacitance after 10,000 cycles at 2 A/g. This work might guide the design of an alternative material for high-energy aqueous supercapacitors.



Sign in / Sign up

Export Citation Format

Share Document