Short-term supplementation of EPA-enriched ethanolamine plasmalogen increases the level of DHA in the brain and liver of n-3 PUFA deficient mice in early life after weaning

2022 ◽  
Author(s):  
Shuai Shuai Fu ◽  
Min Wen ◽  
Yingcai Zhao ◽  
Hao-hao Shi ◽  
Changhu Xue ◽  
...  

The lack of n-3 polyunsaturated fatty acids (PUFAs) in the mother's diet significantly reduced the amount of docosahexaenoic acid (DHA) in the brains of offspring, which might affect their brain...


2021 ◽  
Author(s):  
Xiaodan Lu ◽  
Rongbin Zhong ◽  
Ling Hu ◽  
Luyao Huang ◽  
Lijiao Chen ◽  
...  

Abstract Large yellow croaker roe phospholipids (LYCRPLs) has great nutritional value because of containing rich docosahexaenoic acid (DHA), which is a kind of n-3 polyunsaturated fatty acids (n-3 PUFAs). In...



Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.





PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0142228 ◽  
Author(s):  
Matteo M. Pusceddu ◽  
Sahar El Aidy ◽  
Fiona Crispie ◽  
Orla O’Sullivan ◽  
Paul Cotter ◽  
...  


1998 ◽  
Vol 4 (6) ◽  
pp. 401-405 ◽  
Author(s):  
V.J. Robles ◽  
H.S. García ◽  
J.A. Monroy ◽  
O. Angulo

Menhaden oil was hydrolyzed using a lipase from Pseudomonas sp. The hydrolysate was cold frac tionated at-72°C. Glyceride synthesis was performed using the same lipase under different reaction environments. The best conditions for the esterification reaction were 39 °C for 18 h in a reaction mixture containing anhydrous glycerol, n-3 polyunsaturated fatty acids (PUFA) enriched solution (2% lipids in hexane), hexane, and phosphate buffer-lipase solution (1% w/v). Product composition was 81.33% triacylglycerides and 18.67% of free fatty acids (w/w). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for 36.18% of the esterified fatty acids, of which 58% was EPA and 42% was DHA. This method offers an alternative to produce glycerides rich in n-3 PUFA.



Synthesis ◽  
2021 ◽  
Author(s):  
alexandre guy ◽  
Jérémy Merad ◽  
Thomas Degrange ◽  
Guillaume Reversat ◽  
Valérie Bultel-Poncé ◽  
...  

Oxylipins are formed in-vivo from polyunsaturated fatty acids (PUFAs). A large structural variety of compounds is grouped under the term oxylipins, which differ from their formation mechanism (involving enzymes or not), as well as their chemical structures (cyclopentanes, tetrahydrofurans, hydroxylated-PUFA etc.). All structures of oxylipins are of great biological interests. Directly correlated to oxidative stress phenomenon, non-enzymatic oxylipins are used as systemic and/or specific biomarkers in various pathologies and more especially, they were found to have their own biological properties. Produced in-vivo as a non-separable mixture of isomers, total synthesis is a keystone to answer biological questions. In this work, we described the total synthesis of three non-enzymatic oxylipins derived from docosahexaenoic acid (DHA) and docosapentanoic acid (DPAn-3) using a unique and convergent synthetic strategy.



Sign in / Sign up

Export Citation Format

Share Document