Regulation of cell migration by α4 and α9 integrins

2019 ◽  
Vol 476 (4) ◽  
pp. 705-718 ◽  
Author(s):  
Willow Hight-Warburton ◽  
Maddy Parsons

Abstract Integrins are heterodimeric transmembrane receptors that play an essential role in enabling cells to sense and bind to extracellular ligands. Activation and clustering of integrins leads to the formation of focal adhesions at the plasma membrane that subsequently initiate signalling pathways to control a broad range of functional endpoints including cell migration, proliferation and survival. The α4 and α9 integrins form a small sub-family of receptors that share some specific ligands and binding partners. Although relatively poorly studied compared with other integrin family members, emerging evidence suggests that despite restricted cell and tissue expression profiles, these integrins play a key role in the regulation of signalling pathways controlling cytoskeletal remodelling and migration in both adherent and non-adherent cell types. This review summarises the known shared and specific roles for α4 and α9 integrins and highlights the importance of these receptors in controlling cell migration within both homeostatic and disease settings.


2019 ◽  
Vol 51 (11) ◽  
pp. 562-577
Author(s):  
C. Joy Shepard ◽  
Sara G. Cline ◽  
David Hinds ◽  
Seyedehameneh Jahanbakhsh ◽  
Jeremy W. Prokop

Genetics of multiple sclerosis (MS) are highly polygenic with few insights into mechanistic associations with pathology. In this study, we assessed MS genetics through linkage disequilibrium and missense variant interpretation to yield a MS gene network. This network of 96 genes was taken through pathway analysis, tissue expression profiles, single cell expression segregation, expression quantitative trait loci (eQTLs), genome annotations, transcription factor (TF) binding profiles, structural genome looping, and overlap with additional associated genetic traits. This work revealed immune system dysfunction, nerve cell myelination, energetic control, transcriptional regulation, and variants that overlap multiple autoimmune disorders. Tissue-specific expression and eQTLs of MS genes implicate multiple immune cell types including macrophages, neutrophils, and T cells, while the genes in neural cell types enrich for oligodendrocyte and myelin sheath biology. There are eQTLs in linkage with lead MS variants in 25 genes including the multitissue eQTL, rs9271640, for HLA-DRB1/ DRB5. Using multiple functional genomic databases, we identified noncoding variants that disrupt TF binding for GABPA, CTCF, EGR1, YY1, SPI1, CLOCK, ARNTL, BACH1, and GFI1. Overall, this paper suggests multiple genetic mechanisms for MS associated variants while highlighting the importance of a systems biology and network approach when elucidating intersections of the immune and nervous system.



2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Fang Xue ◽  
Jing Yang ◽  
Qirong Li ◽  
Haibin Zhou

Abstract Trophoblastic dysfunction, such as insufficient migration and invasion, is well-known to be correlated with preeclampsia (PE). Recently, microRNAs (miRNAs) have been implicated in diverse biological processes and human diseases, including PE. However, the expression and functions of miRNAs in the progression of PE, especially in the regulation of trophoblast cell migration and invasion remain largely unclear. Here, we compared the miRNAs expression profiles of PE patients with healthy controls using microarray assay and chose a significant increased miRNA-miR-34a-5p for further investigation. Overexpression of miR-34a-5p dramatically reduced migration and invasion in trophoblast HTR-8/SVneo cells, whereas enhanced by its inhibitor. Luciferase activity assay showed that miR-34a-5p directly target Smad family member 4 (Smad4), which is associated with cancer cell invasiveness and metastasis. We also found that Smad4 was down-regulated in PE patients, and an inverse relationship between Smad4 and miR-34a-5p expression levels was observed in placental tissues from PE patients. Further study showed that knockdown of Smad4 effectively attenuated the promoting effects of miR-34a-5p inhibition on the migration and invasion of HTR-8/SVneo cells. Taken together, these findings suggest that inhibition of miR-34a-5p improves invasion and migration of trophoblast cells by directly targetting Smad4, which indicated the potential of miR-34a-5p as a therapeutic target against PE.



2021 ◽  
Author(s):  
Kelsie E Hunnicutt ◽  
Jeffrey M Good ◽  
Erica L Larson

Whole tissue RNASeq is the standard approach for studying gene expression divergence in evolutionary biology and provides a snapshot of the comprehensive transcriptome for a given tissue. However, whole tissues consist of diverse cell types differing in expression profiles, and the cellular composition of these tissues can evolve across species. Here, we investigate the effects of different cellular composition on whole tissue expression profiles. We compared gene expression from whole testes and enriched spermatogenesis populations in two species of house mice, Mus musculus musculus and M. m. domesticus, and their sterile and fertile F1 hybrids, which differ in both cellular composition and regulatory dynamics. We found that cellular composition differences skewed expression profiles and differential gene expression in whole testes samples. Importantly, both approaches were able to detect large-scale patterns such as disrupted X chromosome expression although whole testes sampling resulted in decreased power to detect differentially expressed genes. We encourage researchers to account for histology in RNASeq and consider methods that reduce sample complexity whenever feasible. Ultimately, we show that differences in cellular composition between tissues can modify expression profiles, potentially altering inferred gene ontological processes, insights into gene network evolution, and processes governing gene expression evolution.



2021 ◽  
Author(s):  
Maria E Bernabeu-Herrero ◽  
Dilip Patel ◽  
Adrianna Bielowka ◽  
Sindu Srikaran ◽  
Patricia Chaves Guerrero ◽  
...  

ABSTRACTIn order to identify cellular phenotypes resulting from nonsense (gain of stop/premature termination codon) variants, we devised a framework of analytic methods that minimised confounder contributions, and applied to blood outgrowth endothelial cells (BOECs) derived from controls and patients with heterozygous nonsense variants in ACVRL1, ENG or SMAD4 causing hereditary haemorrhagic telangiectasia (HHT). Following validation of 48 pre-selected genes by single cell qRT-PCR, discovery RNASeq ranked HHT-differential alignments of 16,807 Ensembl transcripts. Consistent gene ontology (GO) processes enriched compared to randomly-selected gene lists included bone morphogenetic protein, transforming growth factor-β and angiogenesis GO processes already implicated in HHT, further validating methodologies. Additional terms/genes including for endoplasmic reticulum stress could be attributed to a generic process of inefficient nonsense mediated decay (NMD). NMD efficiency ranged from 78-92% (mean 87%) in different BOEC cultures, with misprocessed mutant protein production confirmed by pulse chase experiments. Genes in HHT-specific and generic nonsense decay (ND) lists displayed differing expression profiles in normal endothelial cells exposed to an additional stress of exogenous 10μmol/L iron which acutely upregulates multiple mRNAs: Despite differing donors and endothelial cell types, >50% of iron-induced variability could be explained by the magnitude of transcript downregulation in HHT BOECs with less efficient NMD. The Genotype Tissue Expression (GTEx) Project indicated ND list genes were usually most highly expressed in non-endothelial tissues. However, across 5 major tissues, although 18/486 nonsense and frameshift variants in highly expressed genes were captured in GTEx, none were sufficiently prevalent to obtain genome-wide significant p values for expression quantitative trait loci (GnomAD allele frequencies <0.0005). In conclusion, RNASeq analytics of rare genotype-selected, patient-derived endothelial cells facilitated identification of natural disease-specific and more generic transcriptional signatures. Future studies should evaluate wider relevance and whether injury from external agents is augmented in cells with already high burdens of defective protein production.



2017 ◽  
Vol 148 ◽  
pp. 40-55 ◽  
Author(s):  
Young-Kyung Bae ◽  
Frank Macabenta ◽  
Heather Leigh Curtis ◽  
Angelike Stathopoulos


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5673
Author(s):  
Ha Hyung Moon ◽  
Nina-Naomi Kreis ◽  
Alexandra Friemel ◽  
Susanne Roth ◽  
Dorothea Schulte ◽  
...  

The microtubule (MT) cytoskeleton is crucial for cell motility and migration by regulating multiple cellular activities such as transport and endocytosis of key components of focal adhesions (FA). The kinesin-13 family is important in the regulation of MT dynamics and the best characterized member of this family is the mitotic centromere-associated kinesin (MCAK/KIF2C). Interestingly, its overexpression has been reported to be related to increased metastasis in various tumor entities. Moreover, MCAK is involved in the migration and invasion behavior of various cell types. However, the precise molecular mechanisms were not completely clarified. To address these issues, we generated CRISPR/dCas9 HeLa and retinal pigment epithelium (RPE) cell lines overexpressing or downregulating MCAK. Both up- or downregulation of MCAK led to reduced cell motility and poor migration in malignant as well as benign cells. Specifically, it’s up- or downregulation impaired FA protein composition and phosphorylation status, interfered with a proper spindle and chromosome segregation, disturbed the assembly and disassembly rate of FA, delayed cell adhesion, and compromised the plus-tip dynamics of MTs. In conclusion, our data suggest MCAK act as an important regulator for cell motility and migration by affecting the actin-MT cytoskeleton dynamics and the FA turnover, providing molecular mechanisms by which deregulated MCAK could promote malignant progression and metastasis of tumor cells.



2016 ◽  
Author(s):  
Vinay Swaminathan ◽  
Joseph Mathew Kalappurakkal ◽  
Shalin B. Mehta ◽  
Pontus Nordenfelt ◽  
Travis I. Moore ◽  
...  

Integrins are transmembrane receptors that, upon activation, bind extracellular matrix (ECM) or cell surface ligands and link them to the actin cytoskeleton to mediate cell adhesion and migration1,2. One model for the structural transitions mediating integrin activation termed “the cytoskeletal force hypothesis” posits that force transmitted from the cytoskeleton to ligand-bound integrins acts as an allosteric stabilizer of the extended-open, high-affinity state3. Since cytoskeletal forces in migrating cells are generated by centripetal “retrograde flow” of F-actin from the cell leading edge, where integrin-based adhesions are initiated4,5, this model predicts that F-actin flow should align and orient activated, ligand-bound integrins in integrin-based adhesions. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrin chimeras in migrating fibroblasts shows that integrins are aligned with respect to the axis of FAs and the direction of F-actin flow, and this alignment requires binding immobilized ligand and talin-mediated linkage to a flowing cytoskeleton. Polarization imaging and Rosetta modelling of chimeras engineered to orient GFP differentially with respect to the integrin headpiece suggest that ligand-bound αVβ3 integrin may be markedly tilted by the force of F-actin flow. These results show that actin cytoskeletal forces actively sculpt an anisotropic molecular scaffold in FAs that may underlie the ability of cells to sense directional ECM and physical cues.



Open Biology ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 120076 ◽  
Author(s):  
Francisco M. Vega ◽  
Audrey Colomba ◽  
Nicolas Reymond ◽  
Mairian Thomas ◽  
Anne J. Ridley

The Rho GTPase RhoB has been shown to affect cell migration, but how it does this is not clear. Here we show that cells depleted of RhoB by RNAi are rounded and have defects in Rac-mediated spreading and lamellipodium extension, although they have active membrane ruffling around the periphery. Depletion of the exchange factor GEF-H1 induces a similar phenotype. RhoB-depleted cells migrate faster, but less persistently in a chemotactic gradient, and frequently round up during migration. RhoB-depleted cells have similar numbers of focal adhesions to control cells during spreading and migration, but show more diffuse and patchy contact with the substratum. They have lower levels of surface β1 integrin, and β1 integrin activity is reduced in actin-rich protrusions. We propose that RhoB contributes to directional cell migration by regulating β1 integrin surface levels and activity, thereby stabilizing lamellipodial protrusions.



2010 ◽  
Vol 21 (2) ◽  
pp. 369-376 ◽  
Author(s):  
Vicente A. Torres ◽  
Ainhoa Mielgo ◽  
Simone Barbero ◽  
Ruth Hsiao ◽  
John A. Wilkins ◽  
...  

Caspase-8 is a key apical sensory protein that governs cell responses to environmental cues, alternatively promoting apoptosis, proliferation, and cell migration. The proteins responsible for integration of these pathways, however, have remained elusive. Here, we reveal that Rab5 regulates caspase-8–dependent signaling from integrins. Integrin ligation leads to Rab5 activation, association with integrins, and activation of Rac, in a caspase-8–dependent manner. Rab5 activation promotes colocalization and coprecipitation of integrins with caspase-8, concomitant with Rab5 recruitment to integrin-rich regions such as focal adhesions and membrane ruffles. Moreover, caspase-8 expression promotes Rab5-mediated internalization and the recycling of β1 integrins, increasing cell migration independently of caspase catalytic activity. Conversely, Rab5 knockdown prevented caspase-8–mediated integrin signaling for Rac activation, cell migration, and apoptotic signaling, respectively. Similarly, Rab5 was critical for caspase-8–driven cell migration in vivo, because knockdown of Rab5 compromised the ability of caspase-8 to promote metastasis under nonapoptotic conditions. These studies identify Rab5 as a key integrator of caspase-8–mediated signal transduction downstream of integrins, regulating cell survival and migration in vivo and in vitro.



2004 ◽  
Vol 166 (6) ◽  
pp. 901-912 ◽  
Author(s):  
Dominic M. Clarke ◽  
Michael C. Brown ◽  
David P. LaLonde ◽  
Christopher E. Turner

Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration.



Sign in / Sign up

Export Citation Format

Share Document