scholarly journals Insulin and β-adrenergic receptors mediate lipolytic and anti-lipolytic signalling that is not altered by type 2 diabetes in human adipocytes

2019 ◽  
Vol 476 (19) ◽  
pp. 2883-2908 ◽  
Author(s):  
Cecilia Jönsson ◽  
Ana P. Castor Batista ◽  
Preben Kjølhede ◽  
Peter Strålfors

Abstract Control of fatty acid storage and release in adipose tissue is fundamental in energy homeostasis and the development of obesity and type 2 diabetes. We here take the whole signalling network into account to identify how insulin and β-adrenergic stimulation in concert controls lipolysis in mature subcutaneous adipocytes obtained from non-diabetic and, in parallel, type 2 diabetic women. We report that, and show how, the anti-lipolytic effect of insulin can be fully explained by protein kinase B (PKB/Akt)-dependent activation of the phosphodiesterase PDE3B. Through the same PKB-dependent pathway β-adrenergic receptor signalling, via cAMP and PI3Kα, is anti-lipolytic and inhibits its own stimulation of lipolysis by 50%. Through this pathway both insulin and β-adrenergic signalling control phosphorylation of FOXO1. The dose–response of lipolysis is bell-shaped, such that insulin is anti-lipolytic at low concentrations, but at higher concentrations of insulin lipolysis was increasingly restored due to inhibition of PDE3B. The control of lipolysis was not altered in adipocytes from diabetic individuals. However, the release of fatty acids was increased by 50% in diabetes due to reduced reesterification of lipolytically liberated fatty acids. In conclusion, our results reveal mechanisms of control by insulin and β-adrenergic stimulation — in human adipocytes — that define a network of checks and balances ensuring robust control to secure uninterrupted supply of fatty acids without reaching concentrations that put cellular integrity at risk. Moreover, our results define how selective insulin resistance leave lipolytic control by insulin unaltered in diabetes, while the fatty acid release is substantially increased.

2009 ◽  
Vol 296 (4) ◽  
pp. E690-E701 ◽  
Author(s):  
Kamila S. Gwiazda ◽  
Ting-Lin B. Yang ◽  
Yalin Lin ◽  
James D. Johnson

There are strong links between obesity, elevated free fatty acids, and type 2 diabetes. Specifically, the saturated fatty acid palmitate has pleiotropic effects on β-cell function and survival. In the present study, we sought to determine the mechanism by which palmitate affects intracellular Ca2+, and in particular the role of the endoplasmic reticulum (ER). In human β-cells and MIN6 cells, palmitate rapidly increased cytosolic Ca2+ through a combination of Ca2+ store release and extracellular Ca2+ influx. Palmitate caused a reversible lowering of ER Ca2+, measured directly with the fluorescent protein-based ER Ca2+ sensor D1ER. Using another genetically encoded indicator, we observed long-lasting oscillations of cytosolic Ca2+ in palmitate-treated cells. In keeping with this observed ER Ca2+ depletion, palmitate induced rapid phosphorylation of the ER Ca2+ sensor protein kinase R-like ER kinase (PERK) and subsequently ER stress and β-cell death. We detected little palmitate-induced insulin secretion, suggesting that these Ca2+ signals are poorly coupled to exocytosis. In summary, we have characterized Ca2+-dependent mechanisms involved in altered β-cell function and survival induced by the free fatty acid palmitate. We present the first direct evidence that free fatty acids reduce ER Ca2+ and shed light on pathways involved in lipotoxicity and the pathogenesis of type 2 diabetes.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4315
Author(s):  
Ines Gouaref ◽  
Asma Bouazza ◽  
Samir Ait Abderrhmane ◽  
Elhadj-Ahmed Koceir

Type 2 diabetes mellitus (T2DM) is associated with lipid metabolism disorder, particularly elevated plasma levels of non-esterified free fatty acids (NEFFA) and an increased cardiovascular disease risk, such as essential hypertension (H). The plasma unbalance of saturated fatty acid (SFA)/polyunsaturated fatty acid (PUFA) ratio is a likely contributor, but the mechanisms involved are not clearly elucidated. The aim of this study is to explore the association between plasma SFA/PUFA ratio and the clusters of cardiometabolic syndrome (CMS), including the atherogenic biomarkers, inflammatory status, feeding patterns, and physical activity in people with T2DM with or without essential hypertension. The study was conducted on 784 adult male and female participants, aged between 30 and 50 years, and divided into 3 groups: 100 T2DM without hypertension (D); 368 T2DM with hypertension (DM); and 316 hypertensive participants without T2DM (H). All Participants were phenotyped regarding CMS clusters according to the NCEP/ATPIII criteria. Insulin resistance was assessed by Homeostasis model assessment (HOMA model). Metabolic, atherogenic, and inflammatory parameters were analyzed by biochemical methods; NEFFA by microfluorimetry; SFA, PUFA-n6 and PUFA-n3 by gas phase chromatography. Dietary lipids and physical activity were analyzed through the use of validated questionnaires. The clusters of CMS were found in all groups. Dyslipidemia was correlated with accretion NEFFA levels in all groups, but more accentuated in the DH group (r = +0.77; p < 0.001). Similarly, plasma PUFA/SFA ratio and PUFA-3 level was lower, concomitantly with a higher plasma ApoB100/ApoA1 (p < 0.001), lipoprotein (a), homocysteine (p < 0.001), and pro-inflammatory cytokines (TNFα, IL-6, IL1-β) in the DH group. Likewise, the depletion of PUFA-n3/PUFA-n6 ratio is associated with the decrease of omega 3-DHA (docosahexaenoic acid) and omega 3-EPA (eicosapentaenoic acid) (p < 0.001). It appears that the PUFAs-n3 ratio modulates cardiometabolic risk, inflammatory state and atherogenic biomarkers. The plasma unbalanced ratio of SFA/PUFA reflects dietary fatty acids intake. The contribution of dietary lipids is undisputed. Nutritional recommendations are required to determine the fatty acids ratio (saturated and unsaturated) provided in the diet.


2013 ◽  
Vol 305 (5) ◽  
pp. H634-H643 ◽  
Author(s):  
Paul M. Rindler ◽  
Clair L. Crewe ◽  
Jolyn Fernandes ◽  
Michael Kinter ◽  
Luke I. Szweda

Obesity enhances the risk for the development of type 2 diabetes and cardiovascular disease. Loss in insulin sensitivity and diminished ability of muscle to take up and use glucose are characteristics of type 2 diabetes. Paradoxically, regulatory mechanisms that promote utilization of fatty acids appear to initiate diet-induced insulin insensitivity. In this review, we discuss recent findings implicating increased mitochondrial production of the prooxidant H2O2 due to enhanced utilization of fatty acids, as a signal to diminish reliance on glucose and its metabolites for energy. In the short term, the ability to preferentially use fatty acids may be beneficial, promoting a metabolic shift that ensures use of available fat by skeletal muscle and heart while preventing intracellular glucose accumulation and toxicity. However, with prolonged consumption of high dietary fat and ensuing obesity, the near exclusive dependence on fatty acid oxidation for production of energy by the mitochondria drives insulin resistance, diabetes, and cardiovascular disease.


2021 ◽  
Author(s):  
Amélie I. S. Sobczak ◽  
Kondwani G. H. Katundu ◽  
Fladia A. Phoenix ◽  
Siavash Khazaipoul ◽  
Ruitao Yu ◽  
...  

Zn2+ is an essential regulator of coagulation. In plasma, Zn2+ availability is fine-tuned by human serum albumin (HSA). Here we show that elevated fatty acid levels contribute to altered coagulation in type-2 diabetes through Zn2+ mishandling by HSA.


Author(s):  
Saeed Al Mahri ◽  
Shuja Shafi Malik ◽  
Maria Al Ibrahim ◽  
Esraa Haji ◽  
Ghida Dairi ◽  
...  

Fatty acids (FFAs) are important biological molecules that serve as a major energy source and are key components of biological membranes. Besides, FFAs play important roles in metabolic regulation and contribute to the development and progression of metabolic disorders like diabetes. Recent studies have shown that FFAs can act as important ligands of G-protein coupled receptors (GPCRs) on the surface of cells and impact key physiological processes. Free fatty acid activated receptors include FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41) and FFAR4 (GPR120). FFAR2 and FFAR3are activated by short chain fatty acids like acetate, propionate and butyrate whereas FFAR1 and FFAR4 are activated by medium and long chain fatty acids like palmitate, oleate, linoleate and others. FFARs have generated considerable attention over the last few years and have become attractive pharmacological targets in the treatment of type 2 diabetes and metabolic syndrome. Several lines of evidence point to their importance in the regulation of whole-body metabolic homeostasis including adipose metabolism. Here we summarize our current understanding of the physiological functions of FFAR isoforms in adipose biology and explore the prospect of FFAR based therapies to treat patients with obesity and Type 2 Diabetes.


2020 ◽  
Vol 27 (SP2) ◽  
pp. e22-e38
Author(s):  
Maximilian Andreas Storz

Type-2-diabetes is considered the new plague of the current century and both, its incidence and prevalence are rapidly increasing. Chronic insulin resistance and a progressive decline in beta-cell function are discussed as the root causes of type-2-diabetes. Both were associated with obesity and pathologically elevated concentrations of circulating free fatty acids in the blood. The harmful effects of chronically elevated free fatty acid levels on glucose homeostasis and non-adipose tissues are referred to as lipotoxicity. Pancreatic beta-cells appear to be particularly vulnerable and both, dietary fat quantity and quality may impact beta-cell function. Diets high in saturated fats are especially harmful to beta-cells while (poly-)unsaturated fatty acids were associated with beta-cell protective effects. This review examined how a dietary modification towards a low-fat vegan diet, which is particularly low in saturated and trans-fats, could help to prevent or reduce lipotoxicity-induced beta cell dysfunction. Several potential mechanisms of action were identified including: (1) reduced total fat intake (fat quantity), (2) a more favorable polyunsaturated fatty acid to saturated fatty acid ratio (fat quality), (3) improved body weight and a reduction in adipose tissue mass, and finally (4) improved glycemic control. The latter appears of paramount importance in light of the accumulating evidence that lipotoxic events are tightly coupled to excess glucose levels. All four mechanisms are likely to contribute complementarily to improved beta-cell function in individuals with type-2-diabetes and may reduce the likelihood of lipotoxic events to occur. Physicians must consider these findings when counseling patients on lifestyle and nutrition.


2005 ◽  
Vol 72 (4) ◽  
pp. 460-469 ◽  
Author(s):  
Richard G Vernon

Fatty acids are the major source of energy for most tissues during periods of negative energy balance; however, fatty acids can, in some circumstances, have pathological effects. Fatty acids are stored as triacylglycerols (TAG), mostly in the various adipose tissue depots of the body. However, if blood unesterified fatty acid (NEFA) levels are elevated for prolonged periods, as may occur during lactation or obesity, TAG can accumulate in other tissues including liver and muscle cells (myocytes), and this can have pathological consequences such as the development of ketosis (Grummer, 1993; Drackley et al. 2001) or type 2 diabetes (Boden & Shulman, 2002; McGarry, 2002).


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 150-OR
Author(s):  
ANNE-MARIE CARREAU ◽  
CHRISTOPHE NOLL ◽  
BRIGITTE GUERIN ◽  
LAURENT BIERTHO ◽  
ERIC E. TURCOTTE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document