scholarly journals Synthesis of [1,2-3H2]cholecalciferol and metabolism of [4-14C,1,2-3H2]- and [4-14C,1-3H]-cholecalciferol in rachitic rats and chicks

1971 ◽  
Vol 121 (4) ◽  
pp. 673-682 ◽  
Author(s):  
D. E. M. Lawson ◽  
B. Pelc ◽  
P. A. Bell ◽  
P. W. Wilson ◽  
E. Kodicek

[1,2-3H2]Cholecalciferol has been synthesized with a specific radioactivity of 508mCi/mmol by using tristriphenylphosphinerhodium chloride, the homogeneous hydrogen catalyst. With doses of 125ng (5i.u.) of [4-14C,1-3H2]cholecalciferol the tissue distribution in rachitic rats of cholecalciferol and its metabolites (25-hydroxycholecalciferol and peak P material) was similar to that found in chicken with 500ng doses of the double-labelled vitamin. The only exceptions were rat kidney, with a very high concentration of vitamin D, and rat blood, with a higher proportion of peak P material, containing a substance formed from vitamin D with the loss of hydrogen from C-1. Substance P formed from [4-14C,1,2-3H2]cholecalciferol retained 36% of 3H, the amount expected from its distribution between C-1 and C-2, the 3H at C-1 being lost. 25-Hydroxycholecalciferol does not seem to have any specific intracellular localization within the intestine of rachitic chicks. The 3H-deficient substance P was present in the intestine and bone 1h after a dose of vitamin D and 30min after 25-hydroxycholecalciferol. There was very little 25-hydroxycholecalciferol in intestine at any time-interval, but bone and blood continued to take it up over the 8h experimental period. It is suggested that the intestinal 3H-deficient substance P originates from outside this tissue. The polar metabolite found in blood and which has retained its 3H at C-1 is not a precursor of the intestinal 3H-deficient substance P.

Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


2019 ◽  
Author(s):  
Chem Int

The assessment of groundwater is essential for the estimation of suitability of water for safe use. An attempt has been made to study the groundwater of selected areas of Punjab (Sheikhupura & Sahiwal) and Sindh (Sindh, Jawar Dharki and Dharki), Pakistan. The results indicate that pH, color and odor were all within limits of WHO that is pH ranges 6.5–8.5, colorless and odorless, respectively. The high values of suspended solids were observed in the Sindh-1 and Dharki samples. Microbiologically only Sahiwal and Jawar Dharki were found fit for drinking purpose. Trace metals analysis of Sheikhupura-1 and Sindh-1 showed that values do not fall within limits of WHO for Iron. The ionic concentration analysis showed that high bicarbonate (HCO3-), ions are present in the samples of Sahiwal and Dharki; Sindh-1 and Jawar Dharki samples showed very high concentration for chloride ions, all samples were satisfactory level for sulphate (SO42-), sodium, magnesium and phosphate ions except samples of Sindh-1 and Jawar Dharki. High concentration of calcium and potassium ions was observed in samples of Sindh-1, while all other samples were found fit for drinking purposes in respect of nitrate, nitrite and ammonium ions. The high concentration of Fluoride was found only in Sheikhupura-2 samples.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2780
Author(s):  
Andrzej Krajewski ◽  
Krzysztof Piorun ◽  
Dominika Maciejewska-Markiewicz ◽  
Marta Markowska ◽  
Karolina Skonieczna-Żydecka ◽  
...  

Background: Burned patients have an increased need for vitamin D supply related to the maintenance of calcium–phosphate homeostasis and the regulation of cell proliferation/differentiation. This study aimed to analyze the concentration of 25-hydroxycholecalciferol and its relationship with severe condition after burn injury. Methods: 126 patients were enrolled in the study. Patients were qualified due to thermal burns—over 10% of total body surface area. On the day of admission, the following parameters were assessed: 25-hydroxycholecalciferol concentration, total protein concentration, albumin concentration, aspartate transaminase activity, alanine transaminase activity, albumin concentration, creatinine concentration, c-reactive protein concentration, procalcitonin concentration, and interleukin-6 concentration. Results: Almost all patients (92%) in the study group had an improper level of vitamin D (<30 ng/mL), with the average of 11.6 ± 10.7 ng/mL; 17.5% of patients had levels of vitamin D below the limit of determination—under 3 ng/mL. The study showed that there are several factors which correlated with vitamin D concentration during the acute phase of burn injury, including: total protein (r = 0.42, p < 0.01), albumin, (r = 0.62, p < 0.01), percentage of body burns (r = 0.36, p < 0.05), aspartate aminotransferase (r = 0.21, p < 0.05), and c-reactive protein (r = 0.22, p < 0.05). We did not find any significant correlation between vitamin D concentration and body mass index. Conclusions: The burn injury has an enormous impact on the metabolism and the risk factors of the deficiency for the general population (BMI) have an effect on burned patients. Our study showed that concentration of 25-hydroxycholecalciferol is strongly correlated with serum albumin level, even more than total burn surface area and burn degrees as expected. We suspect that increased supplementation of vitamin D should be based on albumin level and last until albumin levels are balanced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingfeng Yang ◽  
Hanze Ying ◽  
Zhixia Li ◽  
Jiang Wang ◽  
Yingying Chen ◽  
...  

AbstractMacrocycles are unique molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies. Among all reactions reported to date, systems that can produce macrocycles in high yield under high reaction concentrations are rare. Here we report the use of dynamic hindered urea bond (HUB) for the construction of urea macrocycles with very high efficiency. Mixing of equal molar diisocyanate and hindered diamine leads to formation of macrocycles with discrete structures in nearly quantitative yields under high concentration of reactants. The bulky N-tert-butyl plays key roles to facilitate the formation of macrocycles, providing not only the kinetic control due to the formation of the cyclization-promoting cis C = O/tert-butyl conformation, but also possibly the thermodynamic stabilization of macrocycles with weak association interactions. The bulky N-tert-butyl can be readily removed by acid to eliminate the dynamicity of HUB and stabilize the macrocycle structures.


Author(s):  
Yasuyoshi Fukuda ◽  
Misako Higashiya ◽  
Takahiro Obata ◽  
Keita Basaki ◽  
Megumi Yano ◽  
...  

Abstract To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to achieve this is to convert the water inside the cells into a non-crystalline glass. It is currently believed that to accomplish this vitrification, the cells must be suspended in a very high concentration (20–40%) of a glass-inducing solute, and subsequently cooled very rapidly. Herein, we report that this belief is erroneous with respect to the vitrification of one-cell rat embryos. In the present study, one-cell rat embryos were vitrified with 5 μL of EFS10 (a mixture of 10% ethylene glycol, 27% Ficoll, and 0.45 M sucrose) in cryotubes at a moderate cooling rate, and warmed at various rates. Survival was assessed according to the ability of the cells to develop into blastocysts and to develop to term. When embryos were vitrified at a 2,613 °C/min cooling rate and thawed by adding 1 mL of sucrose solution (0.3 M, 50 °C) at a warming rate of 18,467 °C/min, 58.1 ± 3.5% of the EFS10-vitrified embryos developed into blastocysts, and 50.0 ± 4.7% developed to term. These rates were similar to those of non-treated intact embryos. Using a conventional cryotube, we achieved developmental capabilities in one-cell rat embryos by rapid warming that were comparable to those of intact embryos, even using low concentrations (10%) of cell-permeating cryoprotectant and at low cooling rates.


2021 ◽  
Vol 10 (3) ◽  
pp. 526
Author(s):  
Jakub Kwiatek ◽  
Aleksandra Jaroń ◽  
Grzegorz Trybek

Introduction: The most important factor which is responsible for the positive course of implant treatment is the process of osseointegration between the implant structure and the host’s bone tissue. The aim of this study was to assess what effect the 25-hydroxycholecalciferol concentration and vitamin D deficiency treatment have on changes in the bone level at the implant site during the process of osseointegration in the mandible. Materials and Methods: The study was with 122 people qualified for implant surgery, who were assigned to three research groups (A, B, and C). Laboratory, clinical, and radiological tests were performed on the day of surgery, and after 6 and 12 weeks. The bone level in the immediate proximity of the implant was determined by radiovisiography (RVG). Results: The bone level after 12 weeks in Groups B and C was significantly higher than after 6 weeks. The bone level in the study Group B was significantly higher than in Group A. The study showed that the higher the levels of 25-hydroxycholecalciferol were observed on the day of surgery, the higher was the level of bone surrounding the implant after 6 and 12 after surgery. Conclusion: The correct level of 25-hydroxycholecalciferol on the day of surgery and vitamin D deficiency treatment significantly increase the bone level at the implant site in the process of radiologically assessed osseointegration.


Sign in / Sign up

Export Citation Format

Share Document