scholarly journals LKB1: cancer, polarity, metabolism, and now fertility

2008 ◽  
Vol 416 (1) ◽  
pp. e1-e3 ◽  
Author(s):  
Reuben J. Shaw

The LKB1 serine/threonine kinase is a tumour suppressor responsible for the inherited familial cancer disorder Peutz-Jeghers syndrome and is inactivated in a large percentage of human lung cancers. LKB1 acts a master kinase, directly phosphorylating and activating a family of 14 AMPK (AMP-activated protein kinase)-related kinases which control cell metabolism, cell growth and cell polarity. In this issue of the Biochemical Journal, Hardie and colleagues discover an alternative splice form of LKB1 that alters the C-terminus of the protein containing a few known sites of post-translational regulation. Although widely expressed, the short isoform (LKB1s) is the sole splice isoform expressed in testes, and its expression peaks at the time of spermatid maturation. Male mice lacking the LKB1s isoform have dramatic defects in spermatozoa, resulting in sterility.

2021 ◽  
pp. jclinpath-2021-207906
Author(s):  
Roman E Zyla ◽  
Elan Hahn ◽  
Anjelica Hodgson

STK11 encodes for the protein liver kinase B1, a serine/threonine kinase which is involved in a number of physiological processes including regulation of cellular metabolism, cell polarity and the DNA damage response. It acts as a tumour suppressor via multiple mechanisms, most classically through AMP-activated protein kinase-mediated inhibition of the mammalian target of rapamycin signalling pathway. Germline loss-of-function mutations in STK11 give rise to Peutz-Jeghers syndrome, which is associated with hamartomatous polyps of the gastrointestinal tract, mucocutaneous pigmentation and a substantially increased lifetime risk of many cancers. In the sporadic setting, STK11 mutations are commonly seen in a subset of adenocarcinomas of the lung in addition to a number of other tumours occurring at various sites. Mutations in STK11 have been associated with worse prognoses across a range of malignancies and may be a predictor of poor response to immunotherapy in a subset of lung cancers, though further studies are needed before the presence of STK11 mutations can be implemented as a routine clinical biomarker.


2016 ◽  
Vol 473 (9) ◽  
pp. 1125-1127 ◽  
Author(s):  
Matthew P. Gillum ◽  
Matthew J. Potthoff

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and the factors contributing to the post-translational regulation of FGF21 activity has previously been unknown. In a recent issue of the Biochemical Journal, Zhen et al. have identified fibroblast activation protein (FAP) as the endopeptidase responsible for this site-specific cleavage of human FGF21 (hFGF21), and propose that inhibition of FAP may be a therapeutic strategy to increase endogenous levels of active FGF21.


Author(s):  
Anna Sobiepanek ◽  
Alessio Paone ◽  
Francesca Cutruzzolà ◽  
Tomasz Kobiela

AbstractMelanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.


2006 ◽  
Vol 34 (5) ◽  
pp. 761-763 ◽  
Author(s):  
S.J. Wicks ◽  
T. Grocott ◽  
K. Haros ◽  
M. Maillard ◽  
P. ten Dijke ◽  
...  

TGF-β (transforming growth factor-β) signals through serine/threonine kinase receptors and intracellular Smad transcription factors. An important regulatory step involves specific ubiquitination by Smurfs (Smad–ubiquitin regulatory factors), members of the HECT (homologous to E6-associated protein C-terminus) ubiquitin ligase family, which mediate the proteasomal degradation of Smads and/or receptors. Recently, we have defined a novel interaction between Smads and UCH37 (ubiquitin C-terminal hydrolase 37), a DUB (de-ubiquitinating enzyme) that could potentially counteract Smurf-mediated ubiquitination. We have demonstrated specific interactions between UCH37 and inhibitory Smad7, as well as weaker associations with Smad2 and Smad3. Importantly, Smad7 can act as an adaptor able to recruit UCH37 to the type I TGF-β receptor. Consequently, UCH37 dramatically up-regulates TGF-β-dependent gene expression by de-ubiquitinating and stabilizing the type I TGF-β receptor. Our findings suggest that competing effects of ubiquitin ligases and DUBs in complex with Smad7 can serve to fine-tune responses to TGF-βs under various physiological and pathological conditions. Studies are currently under way using activity-based HA (haemagglutinin)-tagged ubiquitin probes to identify the full spectrum of DUBs that impact on Smad/TGF-β signalling activity.


2016 ◽  
Vol 198 (6) ◽  
pp. 986-993 ◽  
Author(s):  
Ning Liu ◽  
Yingying Li ◽  
Chunyan Dong ◽  
Xiaohan Xu ◽  
Pan Wei ◽  
...  

ABSTRACTAMP-activated protein kinase (AMPK) is a serine/threonine kinase that is well conserved during evolution. AMPK activation inhibits production of reactive oxygen species (ROS) in cells via suppression of NADPH oxidase. However, the role of AMPK during the process ofBrucellainfection remains unknown. Our data demonstrate thatB. abortusinfection induces AMPK activation in HeLa cells in a time-dependent manner. The known AMPK kinases LKB1, CAMKKβ, and TAK1 are not required for the activation of AMPK byB. abortusinfection. Instead, this activation is dependent on the RNase activity of inositol-requiring enzyme 1 (IRE1). Moreover, we also found thatB. abortusinfection-induced IRE1-dependent activation of AMPK promotesB. abortusintracellular growth with peritoneal macrophages via suppression of NADPH-derived ROS production.IMPORTANCEPrevious studies showed thatB. abortusinfection does not promote any oxidative burst regulated by NADPH oxidase. However, the underlying mechanism remains elusive. We report for the first time that AMPK activation caused byB. abortusinfection plays important role in NADPH oxidase-derived ROS production.


2011 ◽  
Vol 10 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Yang Liu ◽  
Xinjing Xu ◽  
Marian Carlson

ABSTRACT The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2552-2552
Author(s):  
Laury Poulain ◽  
Adrien Grenier ◽  
Johanna Mondesir ◽  
Arnaud Jacquel ◽  
Claudie Bosc ◽  
...  

Acute myeloid leukemia (AML) is a myeloid progenitor-derived neoplasm of poor prognosis, particularly among the elderly, in whom age and comorbidities preclude the use of intensive therapies. Novel therapeutic approaches for AML are therefore critically needed. Adenosine monophosphate (AMP) activated protein kinase (AMPK) is a pleiotropic serine/threonine kinase promoting catabolism that represses anabolism and enhances autophagy in response to stress1. AMPK heterotrimers comprise catalytic α- and regulatory β- and γ-subunits, the latter harboring binding sites for AMP. Targets of AMPK include a host of metabolic pathway enzymes mediating carbohydrate, lipid and protein synthesis and metabolism. Accumulating evidence implicates AMPK in cancer biology, primarily as a tumor suppressor, although minimal AMPK activity may also be required for cancer cell growth under stress conditions2,3. Pharmacological activation of AMPK thus represents an attractive new strategy for targeting AML. We previously used the selective small molecule AMPK activator GSK621 to show that AMPK activation induces cytotoxicity in AML but not in normal hematopoietic cells, contingent on concomitant activation of the mammalian target of rapamycin complex 1 (mTORC1)4. However, the precise mechanisms of AMPK-induced AML cytotoxicity have remained unclear. We integrated gene expression profiling and bioinformatics proteomic analysis to identify the serine/threonine kinase PERK - one of the key effectors of the endoplasmic reticulum stress response - as a potential novel target of AMPK. We showed that PERK was directly phosphorylated by AMPK on at least two conserved residues (serine 439 and threonine 680) and that AMPK activators elicited a PERK/eIF2A signaling cascade independent of the endoplasmic reticulum stress response in AML cells. CRISPR/Cas9 depletion and complementation assays illuminated a critical role for PERK in apoptotic cell death induced by pharmacological AMPK activation. Indeed, GSK621 induced mitochondrial membrane depolarization and apoptosis in AML cells, an effect that was mitigated when cells were depleted of PERK or expressed PERK with a loss of function AMPK phosphorylation site mutation. We identified the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) as a downstream target of the AMPK/PERK pathway, as its expression was enhanced in PERK knockdown AML cells. Moreover, selective pharmacologic activation of ALDH2 by the small molecule ALDA-1 recapitulated the protective effects of PERK depletion in the face of pharmacological AMPK activation. Corroborating the impact of the AMPK/PERK axis on mitochondrial apoptotic function, BH3 profiling showed marked Bcl-2 dependency in AML cells treated with GSK621. This dependency was abrogated in PERK-depleted cells, suggesting a role for PERK in mitochondrial priming to cell death. In vitro drug combination studies further demonstrated synergy between the clinical grade Bcl-2 inhibitor venetoclax (ABT-199) and each of four AMPK activators (GSK621, MK-8722, PF-06409577 and compound 991) in multiple AML cell lines. Finally, the addition of GSK621 to venetoclax enhanced anti-leukemic activity in primary AML patient samples ex vivo and in humanized mouse models in vivo. These findings together clarify the mechanisms of cytotoxicity induced by AMPK activation and suggest that combining pharmacologic AMPK activators with venetoclax may hold therapeutic promise in AML. References 1. Lin S-C, Hardie DG. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metabolism. 2018;27(2):299-313. 2. Hardie DG. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer? Clinical Cancer Research. 2015;21(17):3836-3840. 3. Jeon S-M, Hay N. The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch. Pharm. Res. 2015;38(3):346-357. 4. Sujobert P, Poulain L, Paubelle E, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11(9):1446-1457. Figure Disclosures Tamburini: Novartis pharmaceutical: Research Funding; Incyte: Research Funding.


2008 ◽  
Vol 412 (2) ◽  
pp. e15-e16 ◽  
Author(s):  
Vilmante Borutaite

The question of how Bax is activated during apoptosis to perform its role in permeabilization of mitochondrial membranes is intriguing for investigators in the wide field of cell death research. In their paper published in the Biochemical Journal in 2006, Capano and Crompton presented their discovery that simulated ischaemia causes rapid activation of AMPK (AMP-activated protein kinase) which phosphorylates and activates p38 MAPK (mitogen-activated protein kinase) leading to Bax activation and translocation to mitochondria in isolated cardiac myocytes. This was the first report on the molecular mechanism of Bax activation and migration during ischaemia-induced apoptosis in cardiomyocytes.


2018 ◽  
Vol 19 (11) ◽  
pp. 3481 ◽  
Author(s):  
Philipp Glosse ◽  
Michael Föller

AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle’s loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell’s ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.


Sign in / Sign up

Export Citation Format

Share Document