A Pyk2–Vav1 complex is recruited to β3-adhesion sites to initiate Rho activation

2009 ◽  
Vol 420 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Chunlei Gao ◽  
Scott D. Blystone

Integrin αvβ3-mediated adhesion of haemopoietic cells to vitronectin results in β3 tyrosine phosphorylation and Rho activation which is necessary for adhesion. Previously, we have shown that the RhoGEF (Rho guanine-nucleotide-exchange factor) Vav1 could associate indirectly with αvβ3 during leucocyte adhesion to vitronectin. In the present study, we have identified the non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2) as the adaptor protein that links Vav1 with αvβ3. The association of Pyk2 and Vav1 with β3 relies on the presence of Tyr747 in β3, the primary site of β3 phosphorylation. However, association of Pyk2 with Vav1 is independent of β3 tyrosine phosphorylation. Formation of a Pyk2–Vav1 complex occurs upon cell adhesion and Pro717 of Pyk2 plays a key role in Pyk2 interaction with Vav1. Utilizing purified recombinant proteins, we confirmed the direct interaction between Pyk2 and Vav1 In vitro. Cells transfected with GFP (green fluorescent protein)–Pyk2-P717A demonstrated severely suppressed cytoskeletal reorganization, impaired Vav1 recruitment, decreased Rho GTPase activation and loss of cell adhesion. Using siRNA (small interfering RNA) to specifically reduce Pyk2 levels in cells resulted in disrupted association between Vav1 and β3 and impaired cell adhesion. These results indicate that Pyk2 is a critical signalling molecule downstream of β3 integrin tyrosine phosphorylation and mediates Vav1 recruitment to accomplish actin reorganization necessary for adhesion.

1996 ◽  
Vol 270 (2) ◽  
pp. F295-F300 ◽  
Author(s):  
G. G. Choudhury ◽  
F. Marra ◽  
H. E. Abboud

Thrombin stimulates mitogenesis and tyrosine phosphorylation of several proteins in glomerular mesangial cells [T. Force, J. M. Kyriakis, J. Avruch, and J. V. Bonventre, J. Biol. Chem. 266: 6650-6656, 1991; and G. Grandaliano, G. Ghosh Choudhury, P. Biswas, and H. E. Abboud, Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36: F528-F536, 1994]. However, none of the tyrosine phosphorylated proteins have been identified. Here we show that thrombin stimulates phosphorylation of four major proteins of molecular masses 170, 125, 97, and 47 kDa in antiphosphotyrosine immunoprecipitates in vitro. Immunoblot analysis of antiphosphotyrosine immunoprecipitates from lysates of thrombin-treated cells with anti-Nck antibody revealed the presence of this src homology domain-containing adaptor molecule in the tyrosine-phosphorylated protein fraction. In addition, in thrombin-treated cells, direct immunoblotting of Nck immunoprecipitates with antiphosphotyrosine antibody showed no tyrosine phosphorylation of Nck. In these immunoprecipitates, we detected a 125-kDa tyrosine-phosphorylated protein. We identified this protein as pp125FAK (FAK, focal adhesion kinase) after analyzing Nck immunoprecipitates by anti-FAK immunoblotting. Treatment of mesangial cells with thrombin resulted in stimulation of the tyrosine kinase activity of pp125FAK in vitro. We conclude that activation of the cytoplasmic protein tyrosine kinase pp125FAK by thrombin stimulates its association with the src homology domain-containing adaptor protein Nck. This indicates that Nck is a direct target for FAK in the thrombin-induced signal transduction pathway.


1994 ◽  
Vol 14 (3) ◽  
pp. 1575-1581
Author(s):  
G J Pronk ◽  
A M de Vries-Smits ◽  
L Buday ◽  
J Downward ◽  
J A Maassen ◽  
...  

Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.


2011 ◽  
Vol 22 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Nina Aro ◽  
Konstantin G. Chernov ◽  
Tuula Nyman ◽  
Jussi Jäntti

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.


2000 ◽  
Vol 347 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Tsukasa OHMORI ◽  
Yutaka YATOMI ◽  
Naoki ASAZUMA ◽  
Kaneo SATOH ◽  
Yukio OZAKI

Proline-rich tyrosine kinase 2 (Pyk2) (also known as RAFTK, CAKβ or CADTK) has been identified as a member of the focal adhesion kinase (FAK) family of protein-tyrosine kinases and it has been suggested that the mode of Pyk2 activation is distinct from that of FAK. In the present study we investigated the mode of Pyk2 activation in human platelets. When platelets were stimulated with thrombin, Pyk2, as well as FAK, was markedly tyrosine-phosphorylated, in a manner mostly dependent on αIIbβ3 integrin-mediated aggregation. The residual Pyk2 tyrosine phosphorylation observed in the absence of platelet aggregation was completely abolished by pretreatment with BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,Nʹ,Nʹ-tetra-acetic acid acetoxymethyl ester]. The Pyk2 phosphorylation was inhibited by protein kinase C (PKC) inhibitors at concentrations that inhibited platelet aggregation. In contrast, direct activation of PKC with the active phorbol ester PMA induced the tyrosine phosphorylation of Pyk2 and FAK but only when platelets were fully aggregated with the exogenous addition of fibrinogen (the ligand for αIIbβ3 integrin). Furthermore, PMA-induced Pyk2 (and FAK) tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. The activation of the von Willebrand factor (vWF)--glycoprotein Ib pathway with botrocetin together with vWF failed to induce Pyk2 (and FAK) tyrosine phosphorylation. Most Pyk2 and FAK was present in the cytosol and membrane skeleton fractions in unstimulated platelets. When platelets were stimulated with thrombin, both Pyk2 and FAK were translocated to the cytoskeleton in an aggregation-dependent manner. In immunoprecipitation studies, Pyk2, as well as FAK, seemed to associate with Shc through Grb2. With the use of glutathione S-transferase fusion proteins containing Shc-SH2, Grb2-SH2, and Grb2 N-terminal and C-terminal SH3 domains, it was implied that the proline-rich region of Pyk2 (and FAK) binds to the N-terminal SH3 domain of Grb2 and that the phosphotyrosine residue of Shc binds to the SH2 domain of Grb2. Although Pyk2 and FAK have been reported to be differentially regulated in many cell types, our results suggest that, in human platelets, the mode of Pyk2 activation is mostly similar to that of FAK, in terms of αIIbβ3 integrin-dependent and PKC-dependent tyrosine phosphorylation. Furthermore, Pyk2, as well as FAK, might have one or more important roles in post-aggregation tyrosine phosphorylation events, in association with the cytoskeleton and through interaction with adapter proteins including Grb2 and Shc.


2021 ◽  
Author(s):  
Rosemarie E. Gough ◽  
Matthew C. Jones ◽  
Thomas Zacharchenko ◽  
Shimin Le ◽  
Miao Yu ◽  
...  

AbstractTalin is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behaviour of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronised phosphorylation of a large number of protein targets. CDK1 activity also maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesiveness that are required for successful completion of mitosis. Using a combination of biochemical, structural and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8 through the use of recombinant fragments. Talin also contains a consensus CDK1 phosphorylation motif centred on S1589; a site that was phosphorylated by CDK1in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of KANK and weakened the mechanical response of the region, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator, CDK1, to the primary integrin effector, talin, therefore provides a primordial solution for coupling the cell proliferation and cell adhesion machineries, and thereby enables microenvironmental control of cell division in multicellular organisms.SummaryThe direct binding of the master cell cycle regulator, CDK1, to the primary integrin effector, talin, provides a primordial solution for coupling the cell proliferation and cell adhesion machineries, and thereby enables microenvironmental control of cell division.


2021 ◽  
Author(s):  
Andris Elksnis ◽  
Tomas A Schiffer ◽  
Fredrik Palm ◽  
Yun Wang ◽  
Jing Cen ◽  
...  

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies, but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of NOD mice with imatinib resulted in increased beta-cell AMPK phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against IAPP-aggregation, TXNIP upregulation and beta-cell death. AICAR mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme ECHS1. In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and ACC phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP downregulation, which in turn protects against beta-cell death.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2633-2639 ◽  
Author(s):  
Atsushi Oda ◽  
Hans D. Ochs ◽  
Laurence A. Lasky ◽  
Susan Spencer ◽  
Katsutoshi Ozaki ◽  
...  

Abstract Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia are caused by mutations of the WAS protein (WASP) gene. WASP may be involved in the regulation of podosome, an actin-rich dynamic cell adhesion structure formed by various types of cells. The molecular links between WASP and podosomes or other cell adhesion structures are unknown. Platelets express an SH2-SH3 adapter molecule, CrkL, that can directly associate with paxillin, which is localized in podosomes. The hypothesis that CrkL binds to WASP was, therefore, tested. Results from coprecipitation experiments using anti-CrkL and GST-fusion proteins suggest that CrkL binds to WASP through its SH3 domain and that the binding was not affected by WASP tyrosine phosphorylation. The binding of GST-fusion SH3 domain of PSTPIP1 in vitro was also not affected by WASP tyrosine phosphorylation, suggesting that the binding of the SH3 domains to WASP is not inhibited by tyrosine phosphorylation of WASP. Anti-CrkL also coprecipitates a 72-kd protein, which was identified as syk tyrosine kinase, critical for collagen induced-platelet activation. CrkL immunoprecipitates contain kinase-active syk, as evidenced by an in vitro kinase assay. Coprecipitation experiments using GST-fusion CrkL proteins suggest that both SH2 and SH3 domains of CrkL are involved in the binding of CrkL to syk. WASP, CrkL, syk, and paxillin-like Hic-5 incorporated to platelet cytoskeleton after platelet aggregation. Thus, CrkL is a novel molecular adapter for WASP and syk and may potentially transfer these molecules to the cytoskeleton through association with cytoskeletal proteins such as Hic-5.


2000 ◽  
Vol 49 (4) ◽  
pp. 245-252
Author(s):  
Hiroshi Ohashi ◽  
Masao Takei ◽  
Hirohito Kita ◽  
Gerald J Gleich ◽  
Isao Serizawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document