scholarly journals Effect of temperature on the association step in thrombin-fibrinogen interaction

1993 ◽  
Vol 294 (2) ◽  
pp. 563-567 ◽  
Author(s):  
M Picozzi ◽  
R De Cristofaro

Kinetics of fibrinopeptide A release by human alpha-thrombin at low fibrinogen concentration allowed us to measure the specificity constant, i.e. kcat/Km, for the interaction between the enzyme and human fibrinogen. A study of the dependence of the ratio kcat/Km upon the viscosity of the medium revealed that fibrinogen acts as a ‘sticky’ substrate, or, in other words, as a substrate that dissociates from the Michaelis complex with a rate comparable with that for acylation of the active site. These experiments allowed us also to compute for the first time the second-order rate constant for thrombin-fibrinogen association. A study of the temperature-dependence of the association rate, carried out over the temperature range spanning from 10 degrees C to 37 degrees C (pH 7.50; I0.15) permitted the estimation of the enthalpy and entropy of activation, delta H++ and delta S++, which were found to be equal to 5.69 +/- 0.77 kJ.mol-1 and -80.25 +/- 1.79 kJ.K-1.mol-1 respectively. In addition, the values of Km for thrombin-fibrinogen reaction were measured at different solution viscosities in order to derive the equilibrium dissociation constant, Ks, of this interaction. These experiments showed that the Ks values for thrombin-fibrinogen binding was equal to 1.8 microM at 25 degrees C. Altogether these results indicated that fibrinogen, though interacting with both the catalytic pocket and the fibrinogen recognition site on the thrombin molecule, dissociates from Michaelis complex with a rate comparable with that shown by amide substrates, which interact only with the catalytic site.

1983 ◽  
Vol 211 (1) ◽  
pp. 237-242 ◽  
Author(s):  
G B Irvine ◽  
N L Blumsom ◽  
D T Elmore

1. Several peptides containing either of the sequences -Phe(NO2)-Trp- and -Phe(NO2)-Phe- and an uncharged hydrophilic group were synthesized, and the steady-state kinetics of their hydrolysis by pig pepsin (EC 3.4.23.1) and chicken liver cathepsin D (EC 3.4.23.5) were determined. Despite the presence of a hydrophilic group to increase substrate solubility, it was not possible to achieve the condition [S]0 much greater than Km, and, in some cases, only values of kcat./Km could be determined by measuring the first-order rate constant when [S]0 much less than Km. 2. Occupancy of the P2 and P3 sites considerably enhanced the specificity constant, and alanine was more effective than glycine at site P2. 3. The specificity constants for the hydrolysis by pepsin of those substrates in the present series that contain an amino acid residue at site P3 are considerably lower than for comparable substrates containing a cationic group. This difference does not apply to cathepsin D. 4. Hydrolyses with cathepsin D commonly exhibited a lag phase, and a possible explanation for this is given.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2454
Author(s):  
Ivan. Y. Skvortsov ◽  
Valery G. Kulichikhin ◽  
Igor I. Ponomarev ◽  
Lydia A. Varfolomeeva ◽  
Mikhail S. Kuzin ◽  
...  

The effect of temperature and storage time at a constant temperature on the stability of poly-(o-aminophenylene)naphthoylenimide solutions in N-methylpyrrolidone has been analyzed using rotational rheometry. A temperature–time window beyond which an irreversible change in the viscoelastic properties of solutions due to cumulative reactions of continuous polymerization and possible intramolecular cyclization has been detected. The influence of polymer concentration and its molecular weight on the rheological properties of solutions determining the choice of methods for their processing into fibers and films has been investigated. The effect of non-solvents (water and ethanol) additives on the rheological properties of solutions and the kinetics of their coagulation has been studied. Dosed addition of non-solvent into the solution promotes a significant increase in the viscoelasticity up to gelation and phase separation. Non-solvent presence in the polymer solutions reduces the activity of the solvent, accelerates the movement of the diffusion front at coagulation, and minimizes the number of macro defects. The combination of parameters under investigation renders it possible for the first time to develop new principles modifying dopes for wet spinning into aqueous or ethanol coagulation bath and finally to obtain a heat- and fire-resistant polynaphthoylenebenzimidazole fibers.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


2018 ◽  
Author(s):  
Asel Sartbaeva ◽  
Paul R. Raithby ◽  
Remi Castaing ◽  
Antony Nearchou

Through a combination of thermogravimetry, mass spectrometry and differential thermal analysis, we demonstrate for the first time that all four zeolites show experimental differences in their host-guest interactions with 18C6. In addition, we have estimated the kinetics of 18C6 decomposition, which is a technique that has not been applied to zeolites previously. Using these findings as a toolkit, a more rational use of OSDAs can be utilised to prepare designer zeolites. Furthermore, the new methodologies presented herein can be applied to current zeolites, such as MFI-type zeolites used in the petrochemical industry.


2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Olav Sundnes ◽  
William Ottestad ◽  
Camilla Schjalm ◽  
Peter Lundbäck ◽  
Lars la Cour Poulsen ◽  
...  

Abstract Background Alarmins are considered proximal mediators of the immune response after tissue injury. Understanding their biology could pave the way for development of new therapeutic targets and biomarkers in human disease, including multiple trauma. In this study we explored high-resolution concentration kinetics of the alarmin interleukin-33 (IL-33) early after human trauma. Methods Plasma samples were serially collected from 136 trauma patients immediately after hospital admission, 2, 4, 6, and 8 h thereafter, and every morning in the ICU. Levels of IL-33 and its decoy receptor sST2 were measured by immunoassays. Results We observed a rapid and transient surge of IL-33 in a subset of critically injured patients. These patients had more widespread tissue injuries and a greater degree of early coagulopathy. IL-33 half-life (t1/2) was 1.4 h (95% CI 1.2–1.6). sST2 displayed a distinctly different pattern with low initial levels but massive increase at later time points. Conclusions We describe for the first time early high-resolution IL-33 concentration kinetics in individual patients after trauma and correlate systemic IL-33 release to clinical data. These findings provide insight into a potentially important axis of danger signaling in humans.


1976 ◽  
Vol 29 (2) ◽  
pp. 443 ◽  
Author(s):  
MA Haleem ◽  
MA Hakeem

Kinetic data are reported for the decarboxylation of β-resorcylic acid in resorcinol and catechol for the first time. The reaction is first order. The observation supports the view that the decomposition proceeds through an intermediate complex mechanism. The parameters of the absolute reaction rate equation are calculated.


1939 ◽  
Vol 17b (4) ◽  
pp. 121-132 ◽  
Author(s):  
J. M. Calhoun ◽  
F. H. Yorston ◽  
O. Maass

The rate of delignification of resin extracted spruce wood-meal has been determined in calcium-base sulphite liquor at temperatures from 130 °C. down to 50 °C. No break was found in the temperature coefficient curve at the lower temperatures, the reaction following the Arrhenius equation closely. Possible mechanisms of the reaction are discussed in the light of existing theories, and the effect of temperature on the yield of pulp is pointed out for its practical interest.


2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


Sign in / Sign up

Export Citation Format

Share Document