scholarly journals Non-enzymic glycation of fibrous collagen: reaction products of glucose and ribose

1995 ◽  
Vol 305 (2) ◽  
pp. 385-390 ◽  
Author(s):  
A J Bailey ◽  
T J Sims ◽  
N C Avery ◽  
E P Halligan

Non-enzymic glycation of collagen involves a series of complex reactions ultimately leading to the formation of intermolecular cross-links resulting in changes in its physical properties. During analysis for the fluorescent cross-link pentosidine we identified the presence of an additional component (Cmpd K) in both glucose and ribose incubations. Cmpd K was formed more quickly than pentosidine in glucose incubations and more slowly than pentosidine in ribose incubations. Cmpd K represented 45% of the total fluorescence compared with 15% for pentosidine in glucose incubations and 25% of the total fluorescence compared with 30% for pentosidine in the ribose incubations. Cmpd K is not an artefact of in vitro incubations, as it was shown to be present in dermal tissue from diabetic patients. Subsequent high-resolution h.p.l.c. analysis of glucose-incubated collagen revealed Cmpd K comprise two components (K1 and K2). Further, a similar analysis of Cmpd K from the ribose incubations revealed two different components (K3 and K4). These differences indicate alternative mechanisms for the reactions of glucose and ribose with collagen. The amounts of these fluorescent components and the pentosidine cross-link determined for both glucose and ribose glycation were found to be far too low (about one pentosidine molecules per 200 collagen molecules after 6 months incubation with glucose) to account for the extensive cross-linking responsible for the changes in physical properties, suggesting that a further additional series of cross-links are formed. We have analysed the non-fluorescent high-molecular-mass components and identified a new component that increases with time of in vitro incubation and is present in the skin of diabetic patients. This component is present in sufficient quantities (estimated at one cross-link per two collagen molecules) to account for the changes in physical properties occurring in vitro.

1993 ◽  
Vol 296 (2) ◽  
pp. 489-496 ◽  
Author(s):  
A J Bailey ◽  
T J Sims ◽  
N C Avery ◽  
C A Miles

The incubation of lens capsules with glucose in vitro resulted in changes in the mechanical and thermal properties of type-IV collagen consistent with increased cross-linking. Differential scanning calorimetry (d.s.c.) of fresh lens capsules showed two major peaks at melting temperatures Tm 1 and Tm 2 at approx. 54 degrees C and 90 degrees C, which can be attributed to the denaturation of the triple helix and 7S domains respectively. Glycosylation of lens capsules in vitro for 24 weeks caused an increase in Tm 1 from 54 degrees C to 61 degrees C, while non-glycosylated, control incubated capsules increased to a Tm 1 of 57 degrees C. The higher temperature required to denature the type-IV collagen after incubation in vitro suggested increased intermolecular cross-linking. Glycosylated lens capsules were more brittle than fresh samples, breaking at a maximum strain of 36.8 +/- 1.8% compared with 75.6 +/- 6.3% for the fresh samples. The stress at maximum strain (or ‘strength’) was dramatically reduced from 12.0 to 4.7 N.mm.mg-1 after glycosylation in vitro. The increased constraints within the system leading to loss of strength and increased brittleness suggested not only the presence of more cross-links but a difference in the location of these cross-links compared with the natural lysyl-aldehyde-derived cross-links. The chemical nature of the fluorescent glucose-derived cross-link following glycosylation was determined as pentosidine, at a concentration of 1 pentosidine molecule per 600 collagen molecules after 24 weeks incubation. Pentosidine was also determined in the lens capsules obtained from uncontrolled diabetics at a level of about 1 per 100 collagen molecules. The concentration of these pentosidine cross-links is far too small to account for the observed changes in the thermal and mechanical properties following incubation in vitro, clearly indicating that another as yet undefined, but apparently more important cross-linking mechanism mediated by glucose is taking place.


1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


2020 ◽  
Vol 295 (7) ◽  
pp. 1973-1984
Author(s):  
Detao Gao ◽  
Mohammad Z. Ashraf ◽  
Lifang Zhang ◽  
Niladri Kar ◽  
Tatiana V. Byzova ◽  
...  

Apolipoprotein A-I (apoA-I) is cross-linked and dysfunctional in human atheroma. Although multiple mechanisms of apoA-I cross-linking have been demonstrated in vitro, the in vivo mechanisms of cross-linking are not well-established. We have recently demonstrated the highly selective and efficient modification of high-density lipoprotein (HDL) apoproteins by endogenous oxidized phospholipids (oxPLs), including γ-ketoalkenal phospholipids. In the current study, we report that γ-ketoalkenal phospholipids effectively cross-link apoproteins in HDL. We further demonstrate that cross-linking impairs the cholesterol efflux mediated by apoA-I or HDL3 in vitro and in vivo. Using LC-MS/MS analysis, we analyzed the pattern of apoprotein cross-linking in isolated human HDL either by synthetic γ-ketoalkenal phospholipids or by oxPLs generated during HDL oxidation in plasma by the physiologically relevant MPO-H2O2-NO2− system. We found that five histidine residues in helices 5–8 of apoA-I are preferably cross-linked by oxPLs, forming stable pyrrole adducts with lysine residues in the helices 3–4 of another apoA-I or in the central domain of apoA-II. We also identified cross-links of apoA-I and apoA-II with two minor HDL apoproteins, apoA-IV and apoE. We detected a similar pattern of apoprotein cross-linking in oxidized murine HDL. We further detected oxPL cross-link adducts of HDL apoproteins in plasma and aorta of hyperlipidemic LDLR−/− mice, including cross-link adducts of apoA-I His-165–apoA-I Lys-93, apoA-I His-154–apoA-I Lys-105, apoA-I His-154–apoA-IV Lys-149, and apoA-II Lys-30–apoE His-227. These findings suggest an important mechanism that contributes to the loss of HDL's atheroprotective function in vivo.


2007 ◽  
Vol 283 (3) ◽  
pp. 1275-1281 ◽  
Author(s):  
Laura A. Fisher ◽  
Mika Bessho ◽  
Tadayoshi Bessho

The processing of stalled forks caused by DNA interstrand cross-links (ICLs) has been proposed to be an important step in initiating mammalian ICL repair. To investigate a role of the XPF-ERCC1 complex in this process, we designed a model substrate DNA with a single psoralen ICL at a three-way junction (Y-shaped DNA), which mimics a stalled fork structure. We found that the XPF-ERCC1 complex makes an incision 5′ to a psoralen lesion on Y-shaped DNA in a damage-dependent manner. Furthermore, the XPF-ERCC1 complex generates an ICL-specific incision on the 3′-side of an ICL. The ICL-specific 3′-incision, along with the 5′-incision, on the cross-linked Y-shaped DNA resulted in the separation of the two cross-linked strands (the unhooking of the ICL) and the induction of a double strand break near the cross-linked site. These results implicate the XPF-ERCC1 complex in initiating ICL repair by unhooking the ICL, which simultaneously induces a double strand break at a stalled fork.


Science ◽  
2014 ◽  
Vol 346 (6213) ◽  
pp. 1127-1130 ◽  
Author(s):  
Renjing Wang ◽  
Nicole S. Persky ◽  
Barney Yoo ◽  
Ouathek Ouerfelli ◽  
Agata Smogorzewska ◽  
...  

DNA interstrand cross-links (ICLs) are highly toxic lesions associated with cancer and degenerative diseases. ICLs can be repaired by the Fanconi anemia (FA) pathway and through FA-independent processes involving the FAN1 nuclease. In this work, FAN1-DNA crystal structures and biochemical data reveal that human FAN1 cleaves DNA successively at every third nucleotide. In vitro, this exonuclease mechanism allows FAN1 to excise an ICL from one strand through flanking incisions. DNA access requires a 5′-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3′ flap, suggesting that FAN1 action is coupled to DNA synthesis or recombination. FAN1’s mechanism of ICL excision is well suited for processing other localized DNA adducts as well.


1983 ◽  
Vol 96 (5) ◽  
pp. 1491-1496 ◽  
Author(s):  
J R Glenney ◽  
P Glenney ◽  
K Weber

Previous studies have shown that molecules related to erythrocyte spectrin are present in the cortical cytoplasm of nonerythroid cells. We report here the localization by immunoelectron microscopy of one such molecule, TW-260/240, in the brush border of intestinal epithelial cells. Using highly specific antibodies against TW-260 and TW-240 as well as antibodies against fodrin, another spectrinlike molecule, we have found that the TW-260/240 molecules are displayed between rootlets at all levels of the terminal web. Occasionally, extended structures appear labeled suggestive of the fine filaments known to cross-link actin bundles. These results are in line with previous in vitro studies showing that TW-260/240 binds to, and cross-links, actin filaments. The results are discussed in terms of a model in which rootlets are immobilized in the terminal web in a matrix of TW-260/240.


2021 ◽  
Vol 7 (2) ◽  
pp. 187-190
Author(s):  
Tom Bode ◽  
Kai Höltje ◽  
Sara Leal-Marin ◽  
Marc Müller ◽  
Birgit Glasmacher

Abstract Autologous plasma proteins can be used to fabricate patient specific cardiovascular implants but need to be cross-linked to increase their mechanical strength and reduce water solubility. Glutaraldehyde is the state-of-the-art solution but its reaction products have been shown to be cytotoxic and pro-inflammatory. In this work, it has been shown, that cross-linking of plasma proteins with biocompatible alternatives to glutaraldehyde is possible. This was achieved by identifying four candidate substances (thrombin, transglutaminase, genipin, EDC) from current literature and investigating their ability to cross-link porcine plasma proteins in vitro. The degree of crosslinking was examined using calorimetric (DSC) and spectroscopic (FTIR, Raman) methods, mapping the influence of cross-linking on the denaturation temperature and primary amino-group content of the proteins. It could be shown that thrombin, genipin and EDC are able to cross-link plasma proteins to a satisfactory degree and thus represent useful alternatives to glutaraldehyde. Transglutaminase, on the other hand, could not sufficiently cross-link the plasma proteins and was therefore ruled out as an alternative.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elizaveta O. Boldinova ◽  
Anna V. Yudkina ◽  
Evgeniy S. Shilkin ◽  
Diana I. Gagarinskaya ◽  
Andrey G. Baranovskiy ◽  
...  

AbstractHuman PrimPol belongs to the archaeo-eukaryotic primase superfamily of primases and is involved in de novo DNA synthesis downstream of blocking DNA lesions and non-B DNA structures. PrimPol possesses both DNA/RNA primase and DNA polymerase activities, and also bypasses a number of DNA lesions in vitro. In this work, we have analyzed translesion synthesis activity of PrimPol in vitro on DNA with an 1,2-intrastrand cisplatin cross-link (1,2-GG CisPt CL) or a model DNA–protein cross-link (DpCL). PrimPol was capable of the 1,2-GG CisPt CL bypass in the presence of Mn2+ ions and preferentially incorporated two complementary dCMPs opposite the lesion. Nucleotide incorporation was stimulated by PolDIP2, and yeast Pol ζ efficiently extended from the nucleotides inserted opposite the 1,2-GG CisPt CL in vitro. DpCLs significantly blocked the DNA polymerase activity and strand displacement synthesis of PrimPol. However, PrimPol was able to reach the DpCL site in single strand template DNA in the presence of both Mg2+ and Mn2+ ions despite the presence of the bulky protein obstacle.


2005 ◽  
Vol 25 (17) ◽  
pp. 7569-7579 ◽  
Author(s):  
Najoua Dendouga ◽  
Hui Gao ◽  
Dieder Moechars ◽  
Michel Janicot ◽  
Jorge Vialard ◽  
...  

ABSTRACT The Mus81-Eme1 endonuclease is implicated in the efficient rescue of broken replication forks in Saccharomyces cerevisiae and Schizosaccharomyces pombe. We have used gene targeting to study the function of the Mus81-Eme1 endonuclease in mammalian cells. Mus81-deficient mice develop normally and are fertile. Surprisingly, embryonic fibroblasts from Mus81−/− animals fail to proliferate in vitro. This proliferation defect can be rescued by expression of the papillomavirus E6 protein that promotes degradation of p53. When grown in culture, Mus81−/− cells have elevated levels of DNA damage, acquire chromosomal aberrations, and are hypersensitive to agents that generate DNA cross-links. In contrast to the situation in yeast, murine Mus81 is not required for replication restart following camptothecin treatment. Mus81−/− mice and cells are hypersensitive to DNA cross-linking agents. Cross-link-induced double-strand break formation is normal in Mus81−/− cells, but the resolution of repair intermediates is not. The persistence of Rad51 foci in Mus81−/− cells suggests that Mus81 acts at a late step in the repair of cross-link-induced lesions. Despite these defects, Mus81−/− mice do not show increased predisposition to lymphoma or any other malignancy in the first year of life.


2021 ◽  
pp. 219256822199064
Author(s):  
Ming-Kai Hsieh ◽  
Mu-Yi Liu ◽  
Tsung-Ting Tsai ◽  
Po-Liang Lai ◽  
Ching-Lung Tai

Study Design: Biomechanical study. Objective: Cross-links are a type of common clinical spinal instrumentation. However, the effects of the position and number of cross-links have never been investigated in long-segment spinal fixation, and the variables have not been optimized. We conducted an in vitro biomechanical study by using a porcine long-segment spinal model with 5 different crosslink configurations to determine the optimal construct for clinical practice. Methods: Five modalities with paired segmental screws from T15-L5 were tested in 20 porcine spines. The spines without cross-links composed the control group, Group A; those with a single cross-link from L2-3 composed Group B; those with 2 cross-links from L1-2 and L3-4 composed Group C; those with 2 cross-links from T15-L1 and L4-5 composed Group D; and those with 3 cross-links from T15-L1, L2-3 and L4-5 composed Group E. Spinal stiffnesses in flexion, extension, lateral bending, and axial rotation were compared among 5 different cross-link configurations in 5-level porcine spinal units. Results: Flexional, extensional and lateral bending stiffnesses did not significantly change with an increasing number of cross-links or positions in the construct. Axial stiffness was significantly increased with 2 cross-links compared to one ( P < 0.05) and with placement more distant from the center of the long spinal fixation construct ( P < 0.05). Conclusions: Two cross-links individually placed proximal and distal from the center of a construct is an optimal and efficient configuration to achieve biomechanical stability in non-rigid lumbar spines undergoing long-level fixation.


Sign in / Sign up

Export Citation Format

Share Document