scholarly journals Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr−/− mice fed on a high-fat diet

2012 ◽  
Vol 32 (5) ◽  
pp. 479-490 ◽  
Author(s):  
Gergana M. Deevska ◽  
Manjula Sunkara ◽  
Andrew J. Morris ◽  
Mariana N. Nikolova-Karakashian

The propensity of LDLs (low-density lipoproteins) for aggregation and/or oxidation has been linked to their sphingolipid content, specifically the levels of SM (sphingomyelin) and ceramide. To investigate this association in vivo, ldlr (LDL receptor)-null mice (ldlr−/−) were fed on a modified (atherogenic) diet containing saturated fats and cholesterol. The diet led to significantly elevated SM content in all serum lipoproteins. In contrast, ceramide increased only in the LDL particles. MS-based analyses of the lipid acyl chain composition revealed a marked elevation in C16:0 fatty acid in SM and ceramide, consistent with the prevalence of palmitic acid in the modified diet. The diet also led to increased activity of the S-SMase [secretory SMase (sphingomyelinase)], a protein that is generated by ASMase (acid SMase) and acts on serum LDL. An increased macrophage secretion seemed to be responsible for the elevated S-SMase activity. ASMase-deficient mice (asm−/−/ldlr−/−) lacked S-SMase activity and were protected from diet-induced elevation in LDL ceramide. LDL from asm−/−/ldlr−/− mice fed on the modified diet were less aggregated and oxidized than LDL from asm+/+/ldlr−/− mice. When tested in vitro, the propensity for aggregation was dependent on the SM level: only LDL from animals on modified diet that have high SM content aggregated when treated with recombinant S-SMase. In conclusion, LDL-SM content and S-SMase activity are up-regulated in mice fed on an atherogenic diet. S-SMase mediates diet-induced changes in LDL ceramide content and aggregation. S-SMase effectiveness in inducing aggregation is dependent on diet-induced enrichment of LDL with SM, possibly through increased hepatic synthesis.

2005 ◽  
Vol 289 (1) ◽  
pp. G108-G115 ◽  
Author(s):  
Pieter Janssen ◽  
Nicolaas H. Prins ◽  
Benoit Moreaux ◽  
Ann L. Meulemans ◽  
Romain A. Lefebvre

We aimed to evaluate the gastric relaxant capacity of the 5-HT1/7-receptor agonist 5-carboxamidotryptamine (5-CT) in conscious dogs and to clarify the mechanism of action by use of selective antagonists, vagotomy, and in vitro experiments. A barostat enabled us to monitor the intragastric volume in response to different treatments (intravenously administered) before and after supradiaphragmatic vagotomy [results presented as the maximum volume change after treatment (mean; n = 5–11)]. In vitro experiments were performed with isolated muscle strips cut from four different stomach regions of the vagotomized dogs [results were fitted to the operational model of agonism to determine the efficacy parameter τ ( n = 5)]. 5-CT (0.5–10 μg/kg) caused a dose-dependent gastric relaxation (29–267 ml) that was completely blocked by the selective 5-HT7-receptor antagonist SB-269970 (50 μg/kg). After vagotomy, the relaxation to 10 μg/kg 5-CT was significantly less pronounced (73 vs. 267 ml; P < 0.05) but still blocked by SB-269970, whereas the response to the nitric oxide donor nitroprusside was similar to that before vagotomy (178 vs. 218 ml). In vitro, 5-CT concentration dependently inhibited the PGF2α-contracted muscle strips before and after vagotomy. Although before and after vagotomy the response in every region was mediated by 5-HT7 receptors (apparent affinity dissociation constant: SB-269970, 8.2–8.6 vs. 8.3–8.6, respectively), the response after vagotomy was less efficacious (log τ: 1.9 to 0.5 vs. 1.4 to −0.1). The results indicate that the 5-CT-induced proximal stomach relaxation in conscious dogs before and after vagotomy is mediated via 5-HT7 receptors. The decreased efficacy of 5-CT in vitro after vagotomy is probably related to vagotomy-induced changes in receptor density or coupling efficiency and provides a possible explanation for the decreased in vivo response to 5-CT after vagotomy.


2021 ◽  
Author(s):  
Joann Diray-Arce ◽  
Asimenia Angelidou ◽  
Kristoffer Jarlov Jensen ◽  
Maria Giulia Conti ◽  
Rachel S. Kelly ◽  
...  

SummaryVaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology, including metabolomics, enables new characterization of vaccine mechanisms of action, these tools have yet to be applied to infants at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms. We employed mass spectrometry-based metabolomics of blood plasma to profile BCG-induced infant responses in Guinea Bissau in vivo and the U.S. in vitro. BCG selectively altered plasma lipid pathways, including lysophospholipids. BCG-induced lysophosphatidylcholines (LPCs) correlated with both TLR agonist- and purified protein derivative (PPD, mycobacterial antigen)-induced blood cytokine production in vitro, raising the possibility that LPCs contribute to BCG immunogenicity. Analysis of an independent newborn cohort from The Gambia demonstrated shared vaccine-induced metabolites such as phospholipids and sphingolipids. BCG-induced changes to the plasma lipidome and LPCs may contribute to its immunogenicity and inform the discovery and development of early life vaccines.HighlightsNeonatal BCG immunization generates distinct metabolic shifts in vivo and in vitro across multiple independent cohorts.BCG induces prominent changes in concentrations of plasma lysophospholipids (LPLs)BCG induced changes in plasma lysophosphatidylcholines (LPCs) correlate with BCG effects on TLR agonist- and mycobacterial antigen-induced cytokine responses.Characterization of vaccine-induced changes in metabolism may define predictive signatures of vaccine responses and inform early life vaccine development.Abstract FigureGraphical abstract:BCG vaccination perturbs metabolic pathways in vivo and in vitro.Vaccines have traditionally been developed empirically, with limited insight into their impact on molecular pathways. Metabolomics provides a new approach to characterizing vaccine mechanisms but has not yet been applied to human newborns, who are at the highest risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) prevents disseminated mycobacterial disease in children and can induce broad protection to reduce mortality due to non-TB infections. Underlying mechanisms are incompletely characterized. Employing mass spectrometry-based metabolomics, we demonstrate that early BCG administration alters the human neonatal plasma metabolome, especially lipid metabolic pathways such as lysophosphatidylcholines (LPCs), both in vivo and in vitro. Plasma LPCs correlated with both innate TLR-mediated and PPD antigen-induced cytokine responses suggesting that BCG-induced lipids might contribute to the immunogenicity of this vaccine. Vaccine-induced metabolic changes may provide fresh insights into vaccine immunogenicity and inform the discovery and development of early life vaccines.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 291-298 ◽  
Author(s):  
Valeria Ettorre ◽  
Patrizia De Marco ◽  
Susi Zara ◽  
Vittoria Perrotti ◽  
Antonio Scarano ◽  
...  

Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1954136
Author(s):  
Sujatha Kumar ◽  
Srimoyee Ghosh ◽  
Geeta Sharma ◽  
Zebin Wang ◽  
Marilyn R. Kehry ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Sign in / Sign up

Export Citation Format

Share Document