scholarly journals MiR-130a-3p inhibits the viability, proliferation, invasion, and cell cycle, and promotes apoptosis of nasopharyngeal carcinoma cells by suppressing BACH2 expression

2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Xin Chen ◽  
Bo Yue ◽  
Changming Zhang ◽  
Meihao Qi ◽  
Jianhua Qiu ◽  
...  

The aim of the present study was to explore the mechanism through which miR-130a-3p affects the viability, proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC). Tissue samples were collected from the hospital department. NPC cell lines were purchased to conduct the in vitro and in vivo assays. A series of biological assays including MTT, Transwell, and wound healing assays were conducted to investigate the effects of miR-130a-3p and BACH2 on NPC cells. MiR-130a-3p was down-regulated in both NPC tissues and cell lines, whereas BACH2 was up-regulated in both tissues and cell lines. MiR-130a-3p overexpression inhibited NPC cell viability, proliferation, migration, and invasion but promoted cell apoptosis. The converse was true of BACH2, the down-regulation of which could inhibit the corresponding cell abilities and promote apoptosis of NPC cells. The target relationship between miR-130a-3p and BACH2 was confirmed. The epithelial–mesenchymal transition (EMT) pathway was also influenced by miR-130a-3p down-regulation. In conclusion, miR-130a-3p could bind to BACH2, inhibit NPC cell abilities, and promote cell apoptosis.

2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yunzhou Cheng

AbstractBackground: Accumulating studies discloses that long non-coding RNAs (lncRNAs) serve important roles in human tumorigenesis, including nasopharyngeal carcinoma (NPC). The purpose of the present study was to determine the role of lncRNA FEZF1-AS1 in NPC.Materials and methods: The expression levels of FEZF1-AS1 in NPC tissues and cell lines were detected by RT-qPCR analysis. MTT assay was performed to investigate the proliferation of NPC cells in vitro, whereas the migration and invasion of NPC cells were determined by wound healing assay and transwell assay. A nude mouse tumor model was established to study the role of FEZF1-AS1 in NPC tumorigenesis in vivo. The expression levels of proteins were detected by Western blot assay.Results: The results showed that FEZF1-AS1 expression was increased in the NPC tissues and cell lines, and the higher expression of FEZF1-AS1 was closely associated with poor prognosis of NPC patients. We further observed that knockdown of FEZF1-AS1 inhibited the proliferation of NPC cells in vitro and suppressed NPC xenograft growth in vivo through inducing G2/M cell cycle arrest. The migratory and invasive abilities of NPC cells were also reduced upon FEZF1-AS1 knockdown. Moreover, we demonstrated that inhibition of FEZF1-AS1 remarkably suppressed epithelial–mesenchymal transition (EMT) and reduced β-catenin accumulation in nucleus in NPC cells.Conclusions: Collectively, we showed that FEZF1-AS1 might be a key regulator of cell cycle, EMT and Wnt/β-catenin signaling in NPC cells, which may be helpful for understanding of pathogenesis of NPC.


Author(s):  
Jian Zhang ◽  
Xin Wen ◽  
Xian-Yue Ren ◽  
Ying-Qin Li ◽  
Xin-Ran Tang ◽  
...  

Abstract Background Metastasis remains the major cause of death in nasopharyngeal carcinoma (NPC). Yippee-like 3 (YPEL3) plays an important role in tumorigenesis. However, its function and mechanism in NPC has not been systematically explored. Methods We evaluated YPEL3 expression in NPC cell lines and tissues using real-time PCR and western blotting. Then, we established NPC cell lines that stably overexpressed YPEL3 and knocked down YPEL3 expression to explore its function in NPC in vitro and in vivo. Additionally, we investigated the potential mechanism of YPEL3 action by identifying the Wnt/β-catenin signaling pathway downstream genes using western blotting. Results YPEL3 was downregulated in NPC cell lines and tissue samples. Ectopic expression of YPEL3 inhibited NPC cell migration and invasion in vitro; while silencing of YPEL3 promoted NPC cell migration and invasion. Further study indicated that overexpression of YPEL3 inhibited NPC cell epithelial–mesenchymal transition (EMT) and that silencing it enhanced EMT. Overexpression of YPEL3 suppressed NPC cell lung metastasis in vivo. The mechanism study determined that YPEL3 suppressed the expression levels of Wnt/β-catenin signaling pathway downstream genes and the nuclear translocation of β-catenin. Conclusions YPEL3 suppresses NPC EMT and metastasis by suppressing the Wnt/β-catenin signaling pathway, which would help better understanding the molecular mechanisms of NPC metastasis and provide novel therapeutic targets for NPC treatment.


2022 ◽  
Vol 11 ◽  
Author(s):  
Xuemin Zhong ◽  
Yanping Yang ◽  
Bo Li ◽  
Pan Liang ◽  
Yiying Huang ◽  
...  

Lipid is the building block and an important source of energy, contributing to the malignant behavior of tumor cells. Recent studies suggested that lipid droplets (LDs) accumulations were associated with nasopharyngeal carcinoma (NPC) progression. Solute carrier family 27 member 6 (SLC27A6) mediates the cellular uptake of long-chain fatty acid (LCFA), a necessary lipid component. However, the functions of SLC27A6 in NPC remain unknown. Here, we found a significant reduction of SLC27A6 mRNA in NPC tissues compared with normal nasopharyngeal epithelia (NNE). The promoter methylation ratio of SLC27A6 was greater in NPC than in non-cancerous tissues. The demethylation reagent 5-aza-2’-deoxycytidine (5-aza-dC) remarkably restored the mRNA expression of SLC27A6, suggesting that this gene was downregulated in NPC owing to DNA promoter hypermethylation. Furthermore, SLC27A6 overexpression level in NPC cell lines led to significant suppression of cell proliferation, clonogenicity in vitro, and tumorigenesis in vivo. Higher SLC27A6 expression, on the other hand, promoted NPC cell migration and invasion. In particular, re-expression of SLC27A6 faciliated epithelial-mesenchymal transition (EMT) signals in xenograft tumors. Furthermore, we observed that SLC27A6 enhanced the intracellular amount of triglyceride (TG) and total cholesterol (T-CHO) in NPC cells, contributing to lipid biosynthesis and increasing metastatic potential. Notably, the mRNA level of SLC27A6 was positively correlated with cancer stem cell (CSC) markers, CD24 and CD44. In summary, DNA promoter hypermethylation downregulated the expression of SLC27A6. Furthermore, re-expression of SLC27A6 inhibited the growth capacity of NPC cells but strengthened the CSC markers. Our findings revealed the dual role of SLC27A6 in NPC and shed novel light on the link between lipid metabolism and CSC maintenance.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2020 ◽  
Vol 10 (7) ◽  
pp. 930-938
Author(s):  
Dawei Zhang ◽  
Lin Xiong ◽  
Liang Li ◽  
Yuan Chen ◽  
Xiaojun Tang ◽  
...  

Objective: In order to investigate the effects of LMP1-Fab antibody on Nasopharyngeal carcinoma (NPC) cancer stem cells (CSCs). Methods/ Results: Methods were performed to study the effects of LMP1-Fab antibody on NPC CSCs in vivo and in vitro, for example, transwell chamber assay, wound healing assay, western blot assay, quantitative real-time PCR assay animal experiments, animal fluorescence imaging, H&E staining, immunohistochemistry. We identified that LMP1 activated the migration and invasion of NPC. Whereas the LMP1-Fab antibody inhibited cell invasion, epithelial-mesenchymal transition (EMT) and migration of NPC CSCs in LMP1+ HNE2 cells. Furthermore, LMP1-Fab antibody significantly increased the expression of E-cadherin, and reduced the expressions of vimentin,N -cadherin and Slug in LMP1+ HNE2 CSCs cells. Mechanistically, LMP1-Fab antibody inhibited lung and liver metastasis by regulating the wnt/ -catenin pathway in the nude mice. Conclusion: These results suggested that the novel antibody-targeting LMP1 is likely to be a potential strategy for the treatment of NPC.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dawei Wang ◽  
Guoliang Lu ◽  
Yuan Shao ◽  
Da Xu

miRNAs are a class of non-coding RNAs that exert critical roles in various biological processes. The aim of the present study was to identify the functional roles of miR-802 in regulating epithelial–mesenchymal transition (EMT) in prostate cancer (PCa). miR-802 expression was detected in 73 pairs of PCa samples and PCa cell lines (PC3 and DU145 cells) by qRT-PCR. Cell proliferation was detected using MTT assay, and cell apoptosis was evaluated using flow cytometry. Transwell assay was conducted to investigate cell migration and invasion. Expression analysis of a set of EMT markers was performed to explore whether miR-802 is involved in EMT program. Xenograft model was established to investigate the function of miR-802 in carcinogenesis in vivo. The direct regulation of Flotillin-2 (Flot2) by miR-802 was identified using luciferase reporter assay. miR-802 was remarkably down-regulated in PCa tissues and cell lines. Gain-of-function trails showed that miR-802 serves as an ‘oncosuppressor’ in PCa through inhibiting cell proliferation and promoting cell apoptosis in vitro. Overexpression of miR-802 significantly suppressed in vivo PCa tumor growth. Luciferase reporter analysis identified Flot2 as a direct target of miR-802 in PCa cells. Overexpressed miR-802 significantly suppressed EMT, migration and invasion in PCa cells by regulating Flot2. We identified miR-802 as a novel tumor suppressor in PCa progression and elucidated a novel mechanism of the miR-802/Flot2 axis in the regulation of EMT, which may be a potential therapeutic target.


2018 ◽  
Vol 48 (1) ◽  
pp. 158-172 ◽  
Author(s):  
Bei Lv ◽  
Lijie Ma ◽  
Wenqing Tang ◽  
Peixin Huang ◽  
Biwei Yang ◽  
...  

Background/Aims: Intrahepatic cholangiocarcinoma (ICC) is a complicated condition, with difficult diagnosis and poor prognosis. The expression and clinical significance of the farnesoid X receptor (FXR), an endogenous receptor of bile acids, in ICC is not well understood. Methods: Western blotting and immunochemical analyses were used to determine the levels of FXR in 4 cholangiocarcinoma cell lines, a human intrahepatic biliary epithelial cell line (HIBEpic) and 322 ICC specimens, respectively, while quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of FXR in cholangiocarcinoma cell lines. We evaluated the prognostic value of FXR expression and its association with clinical parameters. We determined the biological significance of FXR in ICC cell lines by agonist-mediated activation and lentivirus-mediated silence. IL-6 expression was tested by an enzyme-linked immunosorbent assay and flow cytometry. In vitro, cell proliferation was examined by Cell Counting Kit-8, migration and invasion were examined by wound healing and transwell assays; in vivo, tumor migration and invasion were explored in NOD-SCID mice. Results: FXR was downregulated in ICC cell lines and clinical ICC specimens. Loss of FXR was markedly correlated with aggressive tumor phenotypes and poor prognosis in patients with ICC. Moreover, FXR expression also had significant prognostic value in carbohydrate antigen 19-9 (CA19-9) negative patients. The expression of FXR was negatively correlated with IL-6 levels in clinical ICC tissues. FXR inhibited the proliferation, migration, invasion and epithelial mesenchymal transition (EMT) of ICC cells via suppression of IL-6 in vitro. Obeticholic acid, an agonist of FXR, inhibited IL-6 production, tumor growth and lung metastasis of ICC in vivo. Conclusions: FXR could be a promising ICC prognostic biomarker, especially in CA19-9 negative patients with ICC. FXR inhibits the tumor growth and metastasis of ICC via IL-6 suppression.


2019 ◽  
Vol 12 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Lisha Xie ◽  
Tao Jiang ◽  
Ailan Cheng ◽  
Ting Zhang ◽  
Pin Huang ◽  
...  

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


Sign in / Sign up

Export Citation Format

Share Document